个人简介
欢迎对大气边界层、大气湍流、数值天气预报、资料同化等方向感兴趣的同学加入课题组 !!!
学习工作经历 Education & Work Experience
2022.12至今 南京信息工程大学大气物理系 教授
2022.09-2022.11 南京信息工程大学大气物理系 讲师
2020.07-2022.07 美国犹他大学大气科学系 Research associate
2018.03-2020.06 美国犹他大学大气科学系 Research scientist
2017.09-2020.06 南京信息工程大学 大气物理学与大气环境 博士
2014.09-2017.06 南京信息工程大学 大气物理学与大气环境 硕士
2010.09-2014.06 南京信息工程大学 大气物理学 本科
研究方向 Research Areas & Interests
大气边界层湍流;复杂地形冷雾、热带气旋湍流动力机制;
大气边界层参数化方案研究;
数值天气预报;卫星、雷达、激光雷达资料同化。
Atmospheric boundary layer turbulence; Mountain terrain cold fog/hurricane boundary layer; PBL scheme;
Numerical weather prediction; Satellite, radar, and lidar data assimilation;
期刊论文 Peer-Reviewed Research Articles
2024
[19] Zhu, X., G. Ou, Z. Pu, X. Li, and J. Xue. 2024: In-Event Surrogate Model Training for Regional Transmission Tower-Line System Dynamic Responses Prediction in Realistic Hurricane Wind Fields, Structure and Infrastructure Engineering, https://doi.org/10.1080/15732479.2024.2345853
[18] Li, X., and Z. Pu, 2024: Effects of Surface Moisture Flux on the Formation and Evolution of Cold Fog over Complex Terrain with Large Eddy Simulation. Q. J., Roy. Meteol. Soc.
[17] Xiaoyi Xu, Li, X., Yuanjie Zhang, Zhiqiu Gao, Jingxi Sun.,2024: Application of WRF-LES on the Simulation of Seasonal Characteristics of Atmospheric Boundary Layer Structure in Taklamakan Desert. Remote Sensing, 16(3):558.
2023
[16] Li X., Pu Z., Zhang JA, and Zhang Z. 2023: A modified vertical eddy diffusivity parameterization in the HWRF model based on large eddy simulations and its impact on the prediction of two landfalling hurricanes. Front. Earth Sci. 11:1320192. http://doi.org/10.3389/feart.2023.1320192
[15] Pu, Z., E. Pardyjak, S. Hoch, I. Gultepe, A. G. Hallar, A. Perelet, R. Beal, G. Carrillo-Cardenas, X. Li, M. Garcia, S. Oncley, W. Brown, J. Anderson, J. Witte, A. Vakhtin, 2023: Cold Fog Amongst Complex Terrain. Bulletin of the American Meteorological Society.https://journals.ametsoc.org/view/journals/bams/aop/BAMS-D-22-0030.1/BAMS-D-22-0030.1.xml
[14] Ming, J., J. Zhang, X. Li, Z. Pu, and Mostafa Momen, 2023:Observational estimates of turbulence parameters in the atmospheric surface layer of landfalling tropical cyclones. Journal of Geophysical Research-Atmospheres. http://doi.org/10.1029/2022JD037768.
[13] Li, X., Pu, Z.*, 2023. Dynamic Mechanisms Associated with the Structure and Evolution of Roll Vortices and Coherent Turbulence in the Hurricane Boundary Layer: A Large Eddy Simulation During the Landfall of Hurricane Harvey. Boundary-Layer Meteorology. https://doi.org/10.1007/s10546-022-00775-w.
2022
[12] Li, X., Pu, Z.*, 2022. Turbulence effects on the formation of cold fog over complex terrain with large-eddy simulation. Geophysical Research Letters. p.e2022GL098792. https://doi.org/10.1029/2022GL098792.
[11] Li, X., Pu, Z.*, Zhang, J.A. and Emmitt, G.D., 2022. Combined Assimilation of Doppler Wind Lidar and Tail Doppler Radar Data over a Hurricane Inner Core for Improved Hurricane Prediction with the NCEP Regional HWRF System. Remote Sensing, 14(10), p.2367. https://doi.org/10.3390/rs14102367.
[10] Pu, Z.*, Wang, Y., Li, X., Ruf, C., Bi, L. and Mehra, A., 2022. Impacts of Assimilating CYGNSS Satellite Ocean-Surface Wind on Prediction of Landfalling Hurricanes with the HWRF Model. Remote Sensing, 14(9), p.2118. https://doi.org/10.3390/rs14092118.
2021
[9] Li, X., Pu, Z.* and Gao, Z., 2021. Combining Monte Carlo and Ensemble Probabilities in Tropical Cyclone Forecasts near Landfall. Journal of Meteorological Research, 35(4), pp.607-622. https://doi.org/10.1007/s13351-021-0128-9.
[8] Li, X., Pu, Z.* and Gao, Z., 2021. Effects of Roll Vortices on the Evolution of Hurricane Harvey during Landfall. Journal of the Atmospheric Sciences, 78(6), pp.1847-1867. https://doi.org/10.1175/JAS-D-20-0270.1.
[7] Li, X. and Pu, Z.*, 2021. Vertical Eddy Diffusivity Parameterization Based on a Large‐Eddy Simulation and Its Impact on Prediction of Hurricane Landfall. Geophysical Research Letters, 48(2), p.e2020GL090703. https://doi.org/10.1029/2020GL090703.
2020
[6] Xue, J., Mohammadi, F., Li, X., Sahraei-Ardakani, M., Ou, G.* and Pu, Z., 2020. Impact of transmission tower-line interaction to the bulk power system during hurricane. Reliability engineering & system safety, 203, p.107079. https://doi.org/10.1016/j.ress.2020.107079.
[5] Li, X., Gao, C.Y., Gao, Z.* and Zhang, X., 2020. Atmospheric boundary layer turbulence structure for severe foggy haze episodes in north China in December 2016. Environmental Pollution, 264, p.114726. https://doi.org/10.1016/j.envpol.2020.114726.
Prior to 2020
[4] Yin, J., Gao, C.Y., Hong, J., Gao, Z.*, Li, Y., Li, X., Fan, S. and Zhu, B., 2019. Surface meteorological conditions and boundary layer height variations during an air pollution episode in Nanjing, China. Journal of Geophysical Research: Atmospheres, 124(6), pp.3350-3364. https://doi.org/10.1029/2018JD029848.
[3] Fan, S., Gao, Z.*, Kalogiros, J., Li, Y., Yin, J. and Li, X., 2019. Estimate of boundary-layer depth in Nanjing city using aerosol lidar data during 2016–2017 winter. Atmospheric Environment, 205, pp.67-77. https://doi.org/10.1016/j.atmosenv.2019.02.022.
[2] Li, X., Gao, Z.*, Li, Y., Gao, C.Y., Ren, J. and Zhang, X., 2019. Meteorological conditions for severe foggy haze episodes over north China in 2016–2017 winter. Atmospheric Environment, 199, pp.284-298. https://doi.org/10.1016/j.atmosenv.2018.11.042.
[1] Li, X., Gao, Z.*, Li, Y. and Tong, B., 2017. Comparison of sensible heat fluxes measured by a large aperture scintillometer and eddy covariance system over a heterogeneous farmland in East China. Atmosphere, 8(6), p.101. https://doi.org/10.3390/atmos8060101.
会议论文 AMS/AGU Presentations
[10] Li, X. and Pu, Z., 2022, June. Turbulence Effects on the Formation of Cold Fog over Complex Terrain with the Large-Eddy Simulation. American Meteorological Society for the 20th Conference on Mountain Meteorology. AMS.
[9] Li, X., Pu, Z. and Zhang, J.A., 2022, January. Assimilation of Doppler Wind Lidar and Tail Doppler Radar Wind Data in the Hurricane Inner-Core Region and its Impacts on the Prediction of Landfilling Hurricanes with the NCEP HWRF System. In 102st American Meteorological Society Annual Meeting. AMS.
[8] Pu, Z., Wang, Y., Li, X., Zhang, J.A., Bi, L., Mehra, A. and Tallapragada, V., 2021, May. Enhancing the Prediction of Landfalling Hurricanes Through Improved Data Assimilation with HWRF and the Hybrid 3DEnVar System. In 34th Conference on Hurricanes and Tropical Meteorology. AMS.
[7] Li, X., Pu, Z. and Ruf, C.S., 2021, May. Assimilation of CYGNSS Data for Improved Understanding and Prediction of Tropical Cyclones and Mesoscale Convective Systems. In 34th Conference on Hurricanes and Tropical Meteorology. AMS.
[6] Li, X. and Pu, Z., 2021, January. Evaluation of a Revised PBL Scheme in HWRF for Improved Forecasts of Landfalling Hurricanes. In 101st American Meteorological Society Annual Meeting. AMS.
[5] Pu, Z., Wang, Y., Li, X., Bi, L., Mehra, A. and Tallapragada, V.S., 2021, January. Enhancing the Prediction of Landfalling Hurricanes with Improved Assimilation of Radial Velocity from Coastal NEXRAD and Surface Observations into HWRF. In 101st American Meteorological Society Annual Meeting. AMS.
[4] Li, X. and Pu, Z., 2020, December. Structure and Dynamic Mechanisms of Roll Vortices in Hurricane Harvey during the Landfall. In AGU Fall Meeting Abstracts (Vol. 2020, pp. A119-0015).
[3] Li, X. and Pu, Z., 2019, December. Large Eddy Simulation of Roll Vortices in Hurricane Harvey during Landfall. In AGU Fall Meeting Abstracts (Vol. 2019, pp. A11G-03).
[2] Sahraei-Ardakani, M., Mohammadi, F., Ou, G., Pu, Z., Xue, J., Li, X. and Sang, Y., 2019, December. Reliability Enhancement via Integration of Extreme Weather Forecast in Power System Operation. In 2019 9th International Conference on Power and Energy Systems (ICPES) (pp. 1-6). IEEE.
[1] Li, X. and Pu, Z., 2019, January. Evaluation of a Monte Carlo Probability Model for Prediction of Landfalling Hurricanes and Comparison with Ensemble Forecasts. In 99th American Meteorological Society Annual Meeting. AMS.
科研项目 Funding
[8] 国家重点研发计划子课题项目:次百米尺度高分辨率大气边界层动力学模式研发,项目骨干,2023.12 - 2026.11
[7] 校人才项目,主持,2023.03 - 2026.03
[6] National science foundation: Interaction Between Landfalling Hurricanes and the Atmospheric Boundary Layer Using Ensemble-based Data Assimilation.
[5] Utah Science Technology and Research: Automated power preventing system during hurricanes.
[4] NOAA: Enhancing the prediction of landfalling hurricanes through improved assimilation of surface observations and NEXRAD data with the GSI-based ensemble-variational hybrid system.
[3] 国家重点基础研究发展计划(973计划)项目:近海台风立体协同观测科学试验,参与
[2] 国家重点研发计划项目:我国大气重污染累积与天气气候过程的双向反馈机制研究,参与
[1] 江苏省研究生科研与实践创新计划:雾霾背景下边界层湍流结构研究,主持
- 研究方向
- 社会兼职
暂无内容
- 教育经历
- 工作经历
暂无内容
团队成员
李鑫
个人信息
- 教师姓名: 李鑫
- 性别: 男
- 所在单位: 大气物理学院
- 联系方式: xin.li@nuist.edu.cn
- 学历: 博士研究生毕业
- 学位:理学博士学位
- 在职信息: 在岗
- 职称: 教授
- 毕业院校:南京信息工程大学