Qr code
中文
Xin Ding 89

Associate professor
Supervisor of Master's Candidates


Gender:Male
Alma Mater:The University of British Columbia
Education Level:With Certificate of Graduation for Doctorate Study
Degree:Doctoral Degree in Philosophy
Status:在岗
School/Department:School of Artificial Intelligence
Contact Information:dingxin@nuist.edu.cn
E-Mail:003763@nuist.edu.cn
Click:Times

The Last Update Time: 2019.5.30

Profile


My name is Xin Ding. I received my Ph.D. in Statistics (2021) from The University of British Columbia under the supervision of Professor William J. Welch and Z. Jane Wang.

Currently, I am an associate professor in the School of Artificial Intelligence at Nanjing University of Information Science & Technology. 

My main research interests include deep generative models, knowledge distillation, hand pose estimation, and their applications.


Research Interests:

Generative Adversarial Networks (GANs), Diffusion Models (DM), Knowledge Distillation, Hand Pose Estimation, Self-supervised Learning, etc. 


Publications:

* equal contribution; ^ corresponding author

Preprint

[1] Xin Ding, Yongwei Wang^, Kao Zhang, Z. Jane Wang. CCDM: Continuous conditional diffusion models for image generation[J]. arXiv preprint arXiv:2405.03546, 2024. [Under Review] [PDF] [Code]

[2]  Huangsen Cao, Yongwei Wang, Yinfeng Liu, Sixian Zheng, Kangtao Lv, Zhimeng Zhang, Bo Zhang, Xin Ding, Fei Wu. HyperDet: Generalizable Detection of Synthesized Images by Generating and Merging A Mixture of Hyper LoRAs[J]. arXiv preprint arXiv:2410.06044, 2024. [Under Review]

[3] Kangtao Lv, Huangsen Cao, Kainan Tu, Yihuai Xu, Zhimeng Zhang, Xin Ding, Yongwei Wang. Hyper Adversarial Tuning for Boosting Adversarial Robustness of Pretrained Large Vision Models[J]. arXiv preprint arXiv:2410.05951, 2024. [Under Review]

[4] Zhan Shi, Xin Ding*^, Peng Ding, et al. Regression-oriented knowledge distillation for lightweight ship orientation angle prediction with optical remote sensing images[J]. arXiv preprint arXiv:2307.06566, 2023. [Under Review] [PDF][Code]

2024

[1] Xin Ding, Yongwei Wang^, Zuheng Xu. Turning waste into wealth: Leveraging low-quality samples for enhancing continuous conditional generative adversarial networks[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(10): 11802-11810. [AAAI'24, CCF A, AR 23.75%] [PDF][Code]

2023

[1] Xin Ding, Yongwei Wang^, Zuheng Xu, William J. Welch, Z. Jane Wang. Continuous conditional generative adversarial networks: Novel empirical losses and label input mechanisms[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(7): 8143-8158.  [T-PAMI'23, SCI 1, IF 23.6] [PDF][Code]

[2] Xin Ding, Yongwei Wang^, Zuheng Xu, Z. Jane Wang, William J. Welch. Distilling and transferring knowledge via cGAN-generated samples for image classification and regression[J]. Expert Systems with Applications, 2023, 213: 119060. [ESWA'23, SCI 1, IF 8.5] [PDF][Code]

[3] Xin Ding, Yongwei Wang^, Z. Jane Wang, William J. Welch. Efficient subsampling of realistic images from GANs conditional on a class or a continuous variable[J]. Neurocomputing, 2023, 517: 188-200.  [Neurocomputing'23, SCI 2, IF 6] [PDF][Code]

2022 and before

[1] Xin Ding^, Yongwei Wang, Zuheng Xu, William J. Welch, Z. Jane Wang. Image generation using continuous conditional generative adversarial networks[M]//Generative Adversarial Learning: Architectures and Applications: Vol. 217. 2022: 87-113. [PDF]

[2] Xin Ding*^, Yongwei Wang*, Zuheng Xu, William J. Welch, Z. Jane Wang. CcGAN: Continuous conditional generative adversarial networks for image generation[C]//International Conference on Learning Representations. 2021. [ICLR'21, AR 28.7%] [PDF][Code]

[3] Yongwei Wang, Xin Ding, Yixin Yang, Li Ding, Rabab Ward, Z Jane Wang. Perception matters: Exploring imperceptible and transferable anti-forensics for GAN-generated fake face imagery detection[J]. Pattern Recognition Letters, 2021, 146: 15-22. [PRL'21, SCI 3, IF 5.1] [PDF]

[4] Xin Ding*^, Qiong Zhang*, William J. Welch. Classification beats regression: Counting of cells from greyscale microscopic images based on annotation-free training samples[C]//Artificial Intelligence: First CAAI International Conference, CICAI 2021, Hangzhou, China, June 5–6, 2021, Proceedings, Part I 1. 2021: 662-673. [CICAI'21, EI, AR 34.5%] [PDF][Code]

[5] Li Ding, Yongwei Wang^Xin Ding, Kaiwen Yuan, Ping Wang, Hua Huang, Z. Jane Wang. Delving into deep image prior for adversarial defense: A novel reconstruction-based defense framework[C]//Proceedings of the 29th ACM International Conference on Multimedia. 2021: 4564-4572.  [ACM MM'21, CCF A, AR 27.9%] [PDF]

[6] Xin Ding^, Z. Jane Wang, William J. Welch. Subsampling generative adversarial networks: Density ratio estimation in feature space with Softplus loss[J]. IEEE Transactions on Signal Processing, 2020, 68: 1910-1922.   [TSP'20, SCI 1, IF 5.4] [PDF][Code]

[7] Xin Ding^, Ziyi Qiu, Xiaohui Chen. Sparse transition matrix estimation for high-dimensional and locally stationary vector autoregressive models[J]. Electronic Journal of Statistics, 2017, 11: 3871-3902.  [EJS'17, SCI 3, IF 1.281] [PDF]









Educational Experience

  • 2010.9 -- 2014.7

    Anhui University       Statistics       Undergraduate (Bachelor’s degree)       Bachelor's Degree in Science

  • 2014.9 -- 2016.12

    University of Illinois at Urbana-Champaign       Statistics       Postgraduate (Master's Degree)       Doctoral Degree

  • 2017.9 -- 2021.11

    The University of British Columbia       Statistics       Postgraduate (Doctoral)       Doctoral degree

Work Experience

No Content
Social Affiliations

No Content
Other Contact Information

No Content
Research Group

No Content
Research Focus

No Content