伍继业
Personal Homepage
Personal Profile


教育背景:  

2014年9月至2018年6月 南京信息工程大学 大气科学(长望实验班)本科;

2018年9月至2024年6月 南京信息工程大学 气象学 博士(硕博连读)。

2022年5月至2023年6月 日本海洋研究开发机构(JAMSTEC) 联合培养博士


工作经历:  

2024年7月至今南京信息工程大学未来技术学院专任教师。


课程授课:

离散数学(2025-2026第一学期,2024级人智+气科双学位班)

气象遥感大数据分析(2024-2025第二学期,2022级数据科学与大数据技术嵌入班)

分布式系统与云计算(2025-2026第一学期,22级大数据(金牛湖园区联培))

气象遥感大数据分析综合实践(2025-2026第一学期,22级大数据2班

python气象应用实践(2025-2026第一学期,23级智慧气象

智慧气象综合实践(2025-2026第一学期,23级人工智能产业班)

大数据处理与挖掘(2025-2026第一学期,人工智能大模型微专业


参与项目情况:

国家科技重大专项子课题“面向大气环境的全球无缝隙气象预测基座模型构建”骨干(在研)

江苏省前沿技术研发计划“面向时空无缝隙天气-气候预测的人工智能大模型技术研发”骨干(在研)

国家自然科学基金重点项目,ENSO和印度洋偶极子的季节-年际可预测性及多时空尺度信号的影响,参与(已结题)

国家自然科学基金基础科学中心项目,气候系统预测研究中心,参与(已结题)

科技部国家重点研发计划项目,大数据与深度学习方法创新地球系统模式发展及应用研究,参与(已结题)

长江空间信息技术工程有限公司项目“复杂地理条件下精密三维气象场模型构建关键技术研究”骨干(在研)


发表论文情况:

一作和共同通讯作者:

1.        Wu, J., Y. Li, J.-J. Luo, and X. Jiang, 2021. Assessing the role of air-sea coupling in predicting Madden-Julian Oscillation with an atmosphere-ocean coupled model. Journal of Climate, 34: 9647-9663.

2.        Wu J, Li Y, Luo J J, et al. Prediction and predictability of boreal winter MJO using a multi-member subseasonal to seasonal forecast system of NUIST (NUIST CFS 1.1)[J]. Climate Dynamics, 2024, 62(5): 3003-3026.

3.        Wu J, Luo J J, Doi T, et al. Revisiting the role of atmospheric initial signals in predicting ENSO[J]. Journal of Climate, 2024, 37(22): 5883-5907.

4.        伍继业,谢欣芮,罗京佳,2024.基于改进版NUIST CFS1.1的热带大气季节内信号及其对中国气温降水影响的预测评估.大气科学学报,43( 1) : 128-143.

5.        Jiang J, Wu J*, Luo J J*. Understanding the Influence of the Tropical Intraseasonal Oscillation in Predicting the Indian Ocean Dipole[J]. Journal of Climate, 2025, 38(3): 645-662.

6.        Jiang K, Wu J*, Luo J J*. Complex influences of tropical Indian and Atlantic Oceans on ENSO prediction[J]. Climate Dynamics, 2025, 63(6): 250.

7.        Qing Y, Wu J*, Luo J J* Characteristics and subseasonal prediction of four types of cold waves in China[J]. Theoretical and Applied Climatology, 2025, 156(4): 1-17.

8.        Sun Q, Wu J*, Luo J J*, et al. Understanding the decreased ENSO predictability since the early 2000s based on data-driven and dynamical models[J]. Journal of Climate, 2026, 39(2): 695-714.

9.        Ling F, Chen K, Wu J, et al. FengWu-W2S: A deep learning model for seamless weather-to-subseasonal forecast of global atmosphere[J]. arXiv preprint arXiv:2411.10191, 2024.(共同一作)

 

主要参与

10.     Li Y, Wu J, Luo J J, et al. Evaluating the eastward propagation of the MJO in CMIP5 and CMIP6 models based on a variety of diagnostics[J]. Journal of Climate, 2022, 35(6): 1719-1743.

11.     Xie X, Wu J, Luo J J, et al. Modulation of Quasi‐Biennial Oscillation on wintertime variability of intraseasonal 2‐m temperature over northern Eurasia and its potential impact on subseasonal prediction in China[J]. Geophysical Research Letters, 2024, 51(2): e2023GL106448.

12.     Zhang Y, Wu J, Zheng Y, et al. Impacts of Atmospheric Internal Variations on the Variability of Sea Surface Temperature Based on the Hydra‐SINTEX Model[J]. Journal of Geophysical Research: Atmospheres, 2024, 129(9): e2023JD040325.

13.     贺嘉樱, 伍继业, 罗京佳. 南京信息工程大学气候预测系统 1.简介[J]. 大气科学学报, 2020, 43(1): 128-143.


 其他参与:

14.     Luo J J, et al. AI for atmosphere-ocean sciences: advancements, challenges, and ways forward[J]. National Science Review 2026 (online)

15.     Tang S, Luo J J, He J, et al. Toward understanding the extreme floods over Yangtze River valley in June–July 2020: Role of tropical oceans[J]. Advances in Atmospheric Sciences, 2021, 38(12): 2023-2039.

16.     Shen Z, Sun Q, Lu X, et al. Current progress in subseasonal-to-decadal prediction based on machine learning[J]. Applied Computing and Geosciences, 2024, 24: 100201.

17.     Lin L, Yu Y, Lu C, et al. Are the extreme marine heatwave events in the central-eastern tropical Pacific predictable 30–60 days in advance by NUIST CFS1. 1 model?[J]. Atmospheric Research, 2023, 289: 106744.

18.     Lin L, Yu Y, Lu C, et al. Influencing Factors of the Sub-Seasonal Forecasting of Extreme Marine Heatwaves: A Case Study for the Central–Eastern Tropical Pacific[J]. Remote Sensing, 2025, 17(5): 810.

19.     Wang M, Yuan C, Liu J, et al. Underestimated relationship between westerly wind bursts and ENSO in CMIP6 models[J]. Atmospheric and Oceanic Science Letters, 2023, 16(6): 100336.




  • Education Background
  • Work Experience
2018-9 | 2024-6
  • 南京信息工程大学
  • Meteorology
  • With Certificate of Graduation for Doctorate Study
  • Doctoral Degree in Science
  • 硕博连读

2014-9 | 2018-6
  • 南京信息工程大学
  • 大气科学(长望实验班)
  • 本科
  • Bachelor's Degree in Science

  • Social Affiliations
  • Research Focus
2025-6
Now
  • 江苏气象学会“台风与热带海洋”专委会成员

Personal Information

未评职称

Gender : Male

Alma Mater : 南京信息工程大学

Education Level : With Certificate of Graduation for Doctorate Study

Degree : Doctoral Degree in Science

Status : 在岗

School/Department : 人工智能学院(未来技术学院、人工智能产业学院)

Date of Employment : 2024-07-13

Business Address : 亚培楼W206

Contact Information : 18262601213

Email :

Email :

You are visitors

The Last Update Time : ..


Copyright©2019 Nanjing University of Information Science and Technology·Network Information Center

MOBILE Version