Qr code
中文
徐磊磊

Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates


School/Department:环境科学与工程学院
Business Address:学科2号楼(中苑),C417
Contact Information:leileixu88@gmail.com
Click:Times

The Last Update Time: 2024.11.27

Profile

Personal profile:  


Name: Xu Leile


Professional title: Professor


Highest educational level: PhD


Graduate school:University of Chinese Academy of Sciences (Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, State Key Laboratory of Oxo Synthesis and Selective Oxidation)


Research directions: Greenhouse gas CO2 resource utilization (carbon neutral science and technology); air pollution control technology; environmental purification materials; etc.


Email: leileixu88@gmail.com


Education background:  


(1) 2004.09-2008.07 Qufu Normal University, School of Chemistry and Chemical Engineering, Materials Chemistry, Bachelor of Science


(2) 2008.09-2013.06 University of Chinese Academy of Sciences, Lanzhou Institute of Chemical Physics, Physical Chemistry, Doctor of Science


(3) 2013.06-2013.08 National University of Singapore Suzhou Research Institute (NUSIR), Research Fellow


(4) 2013.08-2015.08 National University of Singapore (NUS), Department of Chemistry, Postdoctoral Research Fellow


(5) 2015.09-2017.09 Korea Advanced Institute of Science and Technology (KAIST), Center for Nanomaterials and Chemical Reactions, Senior Research Fellow


(6) 2019.03-2021.07 King Abdullah University of Science and Technology (KAUST), Catalysis Center, Visiting Scholar


Academic Part-time Positions:

(1) Frontier in Chemistry (SCI Zone 2 of Chinese Academy of Sciences, Impact Factor 5.545), Associate Editor

(2) Sustainable Chemistry (SCI Journal), Editorial Board Member

(3) Applied Catalysis B: Environmental, Fuel, Applied Surface Science, ACS Catalysis, Journal of CO2 Utilization, and more than a dozen other academic journals, Outstanding Reviewer


Honors and Awards:

(1) Outstanding Paper Award at the 18th National Rare Earth Catalysis Conference, 2011, Chinese Society of Rare Earths.


(2) First Prize (Guidance) at the 26th Gansu Province Youth Science and Technology Innovation Competition, 2011, Gansu Provincial Association for Science and Technology, Gansu Provincial Department of Education.


(3) Zhu Liyuehua Outstanding Ph.D. Scholarship, 2013, Bureau of Frontier Science and Education, Chinese Academy of Sciences.


(4) 12th Natural Science Outstanding Academic Paper Award, 2018, Evaluation Committee for Outstanding Academic Papers in Natural Science, Nanjing City.


(5) Selected in the 2022 World's Top 2% Scientists list for "Annual Scientific Impact" (World's Top 2% Scientists 2022, released by Stanford University).


(6) Nomination for the "Ten Stars of Youth Science and Technology" at the First Young Science and Technology Stars Awards, 2023, Nanjing University of Information Science and Technology.


(7) Selected in the 2023 World's Top 2% Scientists list for "Annual Scientific Impact" (World's Top 2% Scientists 2023, released by Stanford University)."


Recent Research Projects:

(1) Construction of Low-Temperature and Efficient CO2 Methanation Catalysts Based on Ordered Mesoporous Ni/Ce Rare Earth Solid Solutions and Mechanism Study, National Natural Science Foundation of China - General Program, Principal Investigator.

(2) Construction of Ordered Mesoporous Constrained Nickel/Cobalt-based Metal Oxide Materials and Research on their Catalytic Performance in Methane Carbon Dioxide Reforming, National Natural Science Foundation of China - Youth Fund, Principal Investigator.

(3) Study on Unconventional Atmospheric Pollutant Emissions and Potential Environmental Impact of Zero-Carbon Biomass-Fueled Boilers, Horizontal Project, Principal Investigator.

(4) Development of Light/Heat/Bio Triple-Coupled Mediated Products for Application in the Treatment of Sludge and Water, Horizontal Project, Principal Investigator."



Mini Bulletin:

The Environmental and Energy Catalysis Research Group has been engaged in long-term research in the fields of greenhouse gas carbon dioxide utilization (carbon neutrality science and technology), atmospheric pollution control technology, environmental purification materials, etc. The project leader pursued a Ph.D. at the State Key Laboratory of Coal Conversion, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences. Subsequently, they conducted scientific research at various institutions including the Department of Chemistry at the National University of Singapore (NUS), the Nano Materials and Chemistry Reaction Center at the Korea Advanced Institute of Science and Technology (KAIST), and the Catalysis Center at King Abdullah University of Science and Technology (KAUST) in Saudi Arabia. They have published over 110 SCI papers in authoritative journals in the fields of environment, catalysis, and energy chemical engineering, including Applied Catalysis B: Environmental, ACS Catalysis, Applied Surface Science, Fuel, ChemCatChem, Catalysis Science & Technology, Journal of CO2 Utilization, International Journal of Hydrogen Energy, etc. These papers have been cited over 4800 times, with 12 papers cited more than 100 times individually. The h-index is 41, and the i10 index is 87.

  

The Environmental and Energy Catalysis Research Group, based on the national strategy of 'pollution reduction and carbon reduction,' has been engaged in long-term research in the fields of greenhouse gas CO2 utilization (carbon neutrality science and technology), atmospheric pollution control technology, and environmental purification materials. The research group is equipped with advanced research instruments, including two fixed-bed reactors, an American Perkins Elmer GC 680 online fully automatic injection chromatograph, a Tianmei GC7900 online fully automatic injection chromatograph, an American TILON LCD-200 online mass spectrometer, a catalytic reaction kinetics evaluation system, hydrothermal synthesis material equipment, catalyst preparation, homogeneous reactor, vacuum drying oven, and other advanced research equipment. The group has established good cooperative relationships with well-known research institutions both domestically and internationally, including Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences; National University of Singapore; Korea Advanced Institute of Science and Technology; King Abdullah University of Science and Technology; Jinan University; Shandong University of Technology; Jiangsu University; Nanjing Forestry University; Institute of Energy, Chinese Academy of Sciences, Qingdao branch, and others.

Since its establishment in September 2017, the research group has published more than 60 papers. Among them, there are over 31 papers affiliated with Nanjing University of Information Science and Technology (NUIST), including 11 papers in Zone 1 of the Chinese Academy of Sciences, 15 papers in Zone 2, and 5 papers in Zone 3. The group has supervised 13 graduate students, including 1 Ph.D. student. Currently, there are 9 graduate students (including 2 international students) and more than 10 undergraduate students in the laboratory.

In recent years, the research group has achieved remarkable results in graduate student training. The graduate students have received a total of 6 national-level honors (6 recipients in four consecutive years from 2019 to 2022). Additionally, one student received the President's Scholarship, and several students received first-class academic scholarships at the university level. Notably, in 2022, Cui Yan, a Ph.D. student jointly supervised by Professor Chen Mindong, was awarded the National Scholarship for Ph.D. students (only 2 recipients in the School of Environmental Science). In 2021, Wen Xueying, a student from the 2019 cohort, received the President's Scholarship for Graduate Students (only 1 recipient in the entire school, 8 recipients in total). Wen Xueying and Xue Yingying from the 2019 and 2020 cohorts, respectively, were awarded the National Scholarship in 2021 (6 recipients in the entire school). In 2020, Cui Yan received the first-class scholarship for Ph.D. admission (only 1 recipient in the entire school). In 2020, Lv Chufei and Wu Xianyun from the 2018 cohort were awarded the National Scholarship for Master's students (5 recipients in the entire school). In 2019, Cui Yan from the 2017 cohort received the National Scholarship for Master's students (5 recipients in the entire school).

 

The graduate student achievements in recent years are noteworthy:

In 2018, Master's student Lü Chufei, with a thesis titled "Effect of Pore Structure and Morphology Control of Carriers on the Catalytic Performance of Ni-Based Catalysts for CO2 Methanation," was honored with the Outstanding Master's Thesis Award at Nanjing University of Information Science and Technology.

In 2019, Master's student Wen Xueying, with a thesis titled "Construction of Low-Temperature and Efficient Ni-Based CO2 Methanation Catalysts Based on In-situ DRIFTS and Other In-situ Characterization Techniques," received the Outstanding Master's Thesis Award for 2023 at Nanjing University of Information Science and Technology.

Also in 2019, undergraduate student Wang Shuhan, with a thesis titled "The Impact of the Morphology Effect of Nanoscale Ceria on the Catalytic Performance of Nickel-Based CO2 Methanation Catalysts," was honored with the Outstanding Undergraduate Thesis Award (First Class) at Nanjing University of Information Science and Technology for 2023.

Furthermore:

  • In 2016, graduate student Lian Xinbo was admitted to the doctoral program at Lanzhou University (Advisor: Academician Huang Jianping).

  • In 2017, graduate student Cui Yan was successfully admitted to the doctoral program at Nanjing University of Information Science and Technology.

  • In 2019, graduate student Wen Xueying was successfully admitted to the doctoral program at Huazhong University of Science and Technology.

  • In 2019, graduate student Song Huikang was successfully admitted to the doctoral program at Southeast University (Advisor: Professor Huang Yaji).

  • In 2020, doctoral student Bian Yufang was successfully admitted to the doctoral program at Beijing University of Technology (Advisors: National Distinguished Professor Chen Biaohua and Professor Wang Ning).

After graduating in 2020, Dr. Cui Yan joined Jiangsu Environmental Protection Group (State-owned enterprise).

In 2019, Master's student Shi Yiyu passed the selection and was appointed as an excellent candidate for prestigious schools in Jiangsu Province. She works at the Organization Department of Yancheng City.

In 2018, Master's student Wu Xianyun is employed at Guiyang Urban Development Investment Group.



A warm welcome to students with backgrounds in environmental science, chemistry, and related fields to join our research group. We recruit 4 graduate students every year, and together, we can learn and progress collaboratively!



Recent Publications

1.     Xu, L.;  Xu, C.;  Chen, B.;  Bian, Y.;  Wen, X.;  Cheng, G.;  Wu, C.-e.;  Qiu, J.; Chen, M., One-pot synthesis of hexagonal mesoporous silica confined Ni based catalysts with advanced CO2 methanation performance. Fuel 2023, 333, 126411.

2.     Xu, L.;  Wen, X.;  Xu, C.;  Bian, Y.;  Chen, M.;  Cheng, G.;  Wu, C.-e.;  Qiu, J.;  Chen, B.; Hu, X., Rare earths modified highly dispersed fibrous Ni/KCC-1 nanosphere catalysts with superb low-temperature CO2 methanation performances. Applied Surface Science 2023, 608, 155258.

3.     Cui, Y.;  Chen, B.;  Xu, L.;  Chen, M.;  Wu, C.-e.;  Qiu, J.;  Cheng, G.;  Wang, N.;  Xu, J.; Hu, X., CO2 methanation over the Ni-based catalysts supported on the hollow ZSM-5 zeolites: Effects of the hollow structure and alkaline treatment. Fuel 2023, 334, 126783.

4.     Bian, Y.;  Xu, C.;  Wen, X.;  Xu, L.;  Cui, Y.;  Wang, S.;  Wu, C.-e.;  Qiu, J.;  Cheng, G.; Chen, M., CO2 methanation over the Ni-based catalysts supported on nano-CeO2 with varied morphologies. Fuel 2023, 331, 125755.

5.     Zhao, F.;  Shi, Y.;  Xu, L.;  Chen, M.;  Xue, Y.;  Wu, C.-E.;  Qiu, J.;  Cheng, G.;  Xu, J.; Hu, X., Designing Highly Efficient Cu2O-CuO Heterojunction CO Oxidation Catalysts: The Roles of the Support Type and Cu2O-CuO Interface Effect. Nanomaterials 2022, 12 (17), 3020.

6.     Yang, B.;  Ni, M.;  Gu, Q.;  Huang, Q.;  Xu, L.;  Chen, M.;  Jin, Q.; Wang, Z., Catalytic Oxidation of Chlorobenzene over Ce-Mn-Ox/TiO2: Performance Study of the Porous Structure. Catalysts 2022, 12 (5), 535.

7.     Xu, L.;  Yang, X.;  Shi, Y.;  Chen, M.;  Xue, Y.;  Wu, C.-e.;  Qiu, J.;  Cheng, G.;  Wang, N.; Xu, J., CO oxidation over the Cu2O/CuO hollow sphere heterojunction catalysts with enhanced low-temperature activities. International Journal of Hydrogen Energy 2022.

8.     Wang, Y.;  Li, C.;  Zhang, S.;  Xu, L.; Hu, X., Steam reforming of monohydric alcohols and polyalcohols: Influence of single or multiple hydroxyl group (s) on nature of the coke. Journal of Industrial and Engineering Chemistry 2022, 110, 286-300.

9.     Shi, Y.;  Xu, L.;  Chen, M.;  Yang, B.;  Cheng, G.;  Wu, C.-e.;  Miao, Z.;  Wang, N.; Hu, X., Fabricating Cu2O-CuO submicron-cubes for efficient catalytic CO oxidation: The significant effect of heterojunction interface. Journal of Industrial and Engineering Chemistry 2022, 105, 324-336.

10.   Mu, J.;  Liang, M.;  Huang, H.;  Meng, J.;  Xu, L.;  Song, Z.;  Wu, M.;  Miao, Z.;  Zhuo, S.; Zhou, J., Experimental and theoretical study of ZrMo-KIT-6 solid acid catalyst with abundant Brønsted acid sites. RSC advances 2022, 12 (15), 9310-9322.

11.   Li, X.;  Zhang, L.;  Zhang, S.;  Xu, L.; Hu, X., Steam reforming of sugar and its derivatives: Functionality dictates thermal properties and morphologies of coke. Fuel 2022, 307, 121798.

12.   Li, X.;  Liang, J.;  Zhang, L.;  Zhang, S.;  Xu, L.;  Wang, Y.; Hu, X., Coke formation in the co-production of hydrogen and phenols from pyrolysis-reforming of lignin. International Journal of Hydrogen Energy 2022, 47 (77), 32835-32848.

13.   Kontchouo, F. M. B.;  Sun, K.;  Li, C.;  Fu, Z.;  Zhang, S.;  Xu, L.; Hu, X., Steam reforming of acetone and isopropanol: Investigation of correlation of ketone and alcohol functional groups with properties of coke. Journal of the Energy Institute 2022, 101, 32-44.

14.   Kontchouo, F. M. B.;  Gao, Z.;  Fan, M.;  Zhang, L.;  Zhang, S.;  Hu, G.;  Xu, L.; Hu, X., Methanation of CO2 over Ni/clay: Effects of calcination temperature on catalyst properties and reaction intermediates formed. International Journal of Energy Research 2022.

15.   Cui, Y.;  Song, H.;  Shi, Y.;  Ge, P.;  Chen, M.; Xu, L., Enhancing the Low-Temperature CO Oxidation over CuO-Based α-MnO2 Nanowire Catalysts. Nanomaterials 2022, 12 (12), 2083.

16.   Cui, Y.;  Qiu, J.;  Chen, B.;  Xu, L.;  Chen, M.;  Wu, C.-e.;  Cheng, G.;  Yang, B.;  Wang, N.; Hu, X., CO2 methanation over Ni/ZSM-5 catalysts: The effects of support morphology and La2O3 modification. Fuel 2022, 324, 124679.

17.   Cui, Y.;  Ge, P.;  Chen, M.; Xu, L., Research Progress in Semiconductor Materials with Application in the Photocatalytic Reduction of CO2. Catalysts 2022, 12 (4), 372.

18.   Cheng, Y.;  Mou, F.;  Yang, M.;  Liu, S.;  Xu, L.;  Luo, M.; Guan, J., Long-range hydrodynamic communication among synthetic self-propelled micromotors. Cell Reports Physical Science 2022, 3 (2), 100739.

19.   Yang, Z.;  Cui, Y.;  Ge, P.;  Chen, M.; Xu, L., CO2 Methanation over Rare Earth Doped Ni-Based Mesoporous Ce0. 8Zr0. 2O2 with Enhanced Low-Temperature Activity. Catalysts 2021, 11 (4), 463.

20.   Xue, Y.;  Xu, L.;  Chen, M.;  Wu, C.-e.;  Cheng, G.;  Wang, N.; Hu, X., Constructing Ni-based confinement catalysts with advanced performances toward the CO 2 reforming of CH 4: state-of-the-art review and perspectives. Catalysis Science & Technology 2021, 11 (19), 6344-6368.

21.   Xu, Q.;  Gao, G.;  Tian, H.;  Gao, Z.;  Zhang, S.;  Xu, L.; Hu, X., Carbon materials derived from polymerization of bio-oil as a catalyst for the reduction of nitrobenzene. Sustainable Energy & Fuels 2021, 5 (11), 2952-2959.

22.   Xu, L.;  Wen, X.;  Chen, M.;  Lv, C.;  Cui, Y.;  Wu, X.;  Wu, C.-E.;  Miao, Z.; Hu, X., Highly dispersed Ni-La catalysts over mesoporous nanosponge MFI zeolite for low-temperature CO2 methanation: Synergistic effect between mesoporous and microporous channels. Journal of Industrial and Engineering Chemistry 2021, 100, 159-173.

23.   Xu, L.;  Cui, Y.;  Chen, M.;  Wen, X.;  Lv, C.;  Wu, X.;  Wu, C.-e.;  Miao, Z.; Hu, X., Screening Transition Metals (Mn, Fe, Co, and Cu) Promoted Ni-Based CO Methanation Bimetal Catalysts with Advanced Low-Temperature Activities. 2021.

24.   Xu, L.;  Cui, Y.;  Chen, M.;  Wen, X.;  Lv, C.;  Wu, X.;  Wu, C.-e.;  Miao, Z.; Hu, X., Screening transition metals (Mn, Fe, Co, and Cu) promoted Ni-based CO2 methanation bimetal catalysts with advanced low-temperature activities. Industrial & Engineering Chemistry Research 2021, 60 (22), 8056-8072.

25.   Wen, X.;  Xu, L.;  Chen, M.;  Shi, Y.;  Lv, C.;  Cui, Y.;  Wu, X.;  Cheng, G.;  Wu, C.-E.; Miao, Z., Exploring the influence of nickel precursors on constructing efficient Ni-based CO2 methanation catalysts assisted with in-situ technologies. Applied Catalysis B: Environmental 2021, 297, 120486.

26.   Wang, Y.;  Sun, K.;  Zhang, S.;  Xu, L.;  Hu, G.; Hu, X., Steam reforming of alcohols and carboxylic acids: Importance of carboxyl and alcoholic hydroxyl groups on coke properties. Journal of the Energy Institute 2021, 98, 85-97.

27.   Wang, F.;  Han, K.;  Xu, L.;  Yu, H.; Shi, W., Ni/SiO2 catalyst prepared by strong electrostatic adsorption for a low-temperature methane dry reforming reaction. Industrial & Engineering Chemistry Research 2021, 60 (8), 3324-3333.

28.   Tian, H.;  Shao, Y.;  Sun, K.;  Gao, G.;  Zhang, L.;  Zhang, S.;  Xu, L.;  Hu, G.; Hu, X., Hydrogenation of biomass derivatives over Ni/clay catalyst: significant impacts of the treatment of clay with NaOH on the reaction network. Journal of Chemical Technology & Biotechnology 2021, 96 (9), 2569-2578.

29.   Tian, H.;  Gao, G.;  Xu, Q.;  Gao, Z.;  Zhang, S.;  Hu, G.;  Xu, L.; Hu, X., Facilitating selective conversion of furfural to cyclopentanone via reducing availability of metallic nickel sites. Molecular Catalysis 2021, 510, 111697.

30.   Sun, Y.;  Li, C.;  Li, Q.;  Zhang, S.;  Xu, L.;  Gholizadeh, M.; Hu, X., Pyrolysis of flaxseed residue: Exploration of characteristics of the biochar and bio-oil products. Journal of the Energy Institute 2021, 97, 1-12.

31.   Sun, K.;  Shao, Y.;  Liu, P.;  Zhang, L.;  Gao, G.;  Dong, D.;  Zhang, S.;  Hu, G.;  Xu, L.; Hu, X., A solid iron salt catalyst for selective conversion of biomass-derived C5 sugars to furfural. Fuel 2021, 300, 120990.

32.   Song, H.;  Xu, L.;  Chen, M.;  Cui, Y.;  Wu, C.-e.;  Qiu, J.;  Xu, L.;  Cheng, G.; Hu, X., Recent progresses in the synthesis of MnO 2 nanowire and its application in environmental catalysis. RSC advances 2021, 11 (56), 35494-35513.

33.   Shao, Y.;  Wang, J.;  Sun, K.;  Gao, G.;  Li, C.;  Zhang, L.;  Zhang, S.;  Xu, L.;  Hu, G.; Hu, X., Selective hydrogenation of furfural and its derivative over bimetallic NiFe-based catalysts: understanding the synergy between Ni sites and Ni–Fe alloy. Renewable Energy 2021, 170, 1114-1128.

34.   Shao, Y.;  Li, Q.;  Dong, X.;  Wang, J.;  Sun, K.;  Zhang, L.;  Zhang, S.;  Xu, L.;  Yuan, X.; Hu, X., Cooperation between hydrogenation and acidic sites in Cu-based catalyst for selective conversion of furfural to γ-valerolactone. Fuel 2021, 293, 120457.

35.   Shao, Y.;  Guo, M.;  Wang, J.;  Sun, K.;  Zhang, L.;  Zhang, S.;  Hu, G.;  Xu, L.;  Yuan, X.; Hu, X., Selective Conversion of Furfural into Diols over Co-Based Catalysts: Importance of the Coordination of Hydrogenation Sites and Basic Sites. Industrial & Engineering Chemistry Research 2021, 60 (28), 10393-10406.

36.   Miao, Z.;  Meng, J.;  Liang, M.;  Li, Z.;  Zhao, Y.;  Wang, F.;  Xu, L.;  Mu, J.;  Zhuo, S.; Zhou, J., In-situ CVD synthesis of Ni@ N-CNTs/carbon paper electrode for electro-reduction of CO2. Carbon 2021, 172, 324-333.

37.   Li, X.;  Zhang, L.;  Li, Q.;  Zhang, Z.;  Zhang, S.;  Li, Y.;  Niu, S.;  Gholizadeh, M.;  Xu, L.; Hu, X., Steam reforming of sugars: Roles of hydroxyl group and carbonyl group in coke formation. Fuel 2021, 292, 120282.

38.   Li, X.;  Wang, Y.;  Fan, H.;  Liu, Q.;  Zhang, S.;  Hu, G.;  Xu, L.; Hu, X., Impacts of residence time on transformation of reaction intermediates and coking behaviors of acetic acid during steam reforming. Journal of the Energy Institute 2021, 95, 101-119.

39.   Li, X.;  Shao, Y.;  Zhang, S.;  Wang, Y.;  Xiang, J.;  Hu, S.;  Xu, L.; Hu, X., Pore diameters of Ni/ZrO2 catalysts affect properties of the coke in steam reforming of acetic acid. International Journal of Hydrogen Energy 2021, 46 (46), 23642-23657.

40.   Li, C.;  Sun, Y.;  Zhang, L.;  Wang, C.;  Zhang, S.;  Li, Q.;  Xu, L.; Hu, X., Cross-interaction of volatiles from co-pyrolysis of lignin with pig manure and their effects on properties of the resulting biochar. Biochar 2021, 3 (3), 391-405.

41.   Han, K.;  Yu, W.;  Xu, L.;  Deng, Z.;  Yu, H.; Wang, F., Reducing carbon deposition and enhancing reaction stability by ceria for methane dry reforming over Ni@ SiO2@ CeO2 catalyst. Fuel 2021, 291, 120182.

42.   Gao, Z.;  Gao, G.;  Li, C.;  Tian, H.;  Xu, Q.;  Zhang, S.;  Xu, L.; Hu, X., Interaction of the reaction intermediates in co-reforming of acetic acid and ethanol impacts coke properties. Molecular Catalysis 2021, 504, 111461.

43.  Zhang, Z.;  Zhang, X.;  Zhang, L.;  Gao, J.;  Shao, Y.;  Dong, D.;  Zhang, S.;  Liu, Q.;  Xu, L.; Hu, X., Impacts of alkali or alkaline earth metals addition on reaction intermediates formed in methanation of CO2 over cobalt catalysts. Journal of the Energy Institute 2020, 93 (4), 1581-1596.

44.   Zhang, Z.;  Sun, Y.;  Wang, Y.;  Sun, K.;  Gao, Z.;  Xu, Q.;  Zhang, S.;  Hu, G.;  Xu, L.; Hu, X., Steam reforming of acetic acid and guaiacol over Ni/Attapulgite catalyst: Tailoring pore structure of the catalyst with KOH activation for enhancing the resistivity towards coking. Molecular Catalysis 2020, 493, 111051.

45.   Yang, H.;  Xu, L.;  Chen, M.;  Lv, C.;  Cui, Y.;  Wen, X.;  Wu, C.-e.;  Yang, B.;  Miao, Z.; Hu, X., Facilely fabricating highly dispersed Ni-based catalysts supported on mesoporous MFI nanosponge for CO2 methanation. Microporous and Mesoporous Materials 2020, 302, 110250.

46.   Yang, B.;  Jin, Q.;  Huang, Q.;  Chen, M.;  Xu, L.;  Shen, Y.;  Xu, H.;  Zhu, S.; Li, X., Synergetic catalytic removal of chlorobenzene and NOx from waste incineration exhaust over MnNb0. 4Ce0. 2Ox catalysts: Performance and mechanism study. Journal of Rare Earths 2020, 38 (11), 1178-1189.

47.   Xu, L.;  Wen, X.;  Chen, M.;  Lv, C.;  Cui, Y.;  Wu, X.;  Wu, C.-e.;  Yang, B.;  Miao, Z.; Hu, X., Mesoporous Ce-Zr solid solutions supported Ni-based catalysts for low-temperature CO2 methanation by tuning the reaction intermediates. Fuel 2020, 282, 118813.

48.   Wu, X.;  Xu, L.;  Chen, M.;  Lv, C.;  Wen, X.;  Cui, Y.;  Wu, C.-e.;  Yang, B.;  Miao, Z.; Hu, X., Recent progresses in the design and fabrication of highly efficient Ni-based catalysts with advanced catalytic activity and enhanced anti-coke performance toward CO2 reforming of methane. Frontiers in Chemistry 2020, 8, 581923.

49.   Wang, F.;  Wang, Y.;  Zhang, L.;  Zhu, J.;  Han, B.;  Fan, W.;  Xu, L.;  Yu, H.;  Cai, W.; Li, Z., Performance enhancement of methane dry reforming reaction for syngas production over Ir/Ce0. 9La0. 1O2-nanorods catalysts. Catalysis Today 2020, 355, 502-511.

50.   Miao, Z.;  Li, Z.;  Liang, M.;  Meng, J.;  Zhao, Y.;  Xu, L.;  Mu, J.;  Zhou, J.;  Zhuo, S.; Si, W., Ordered mesoporous titanium phosphate material: a highly efficient, robust and reusable solid acid catalyst for acetalization of glycerol. Chemical Engineering Journal 2020, 381, 122594.

51.   Lv, C.;  Xu, L.;  Chen, M.;  Cui, Y.;  Wen, X.;  Wu, C.-e.;  Yang, B.;  Wang, F.;  Miao, Z.; Hu, X., Constructing highly dispersed Ni based catalysts supported on fibrous silica nanosphere for low-temperature CO2 methanation. Fuel 2020, 278, 118333.

52.   Lv, C.;  Xu, L.;  Chen, M.;  Cui, Y.;  Wen, X.;  Li, Y.;  Wu, C.-e.;  Yang, B.;  Miao, Z.; Hu, X., Recent progresses in constructing the highly efficient Ni based catalysts with advanced low-temperature activity toward CO2 methanation. Frontiers in Chemistry 2020, 8, 269.

53.   Liang, X.;  Mou, F.;  Huang, Z.;  Zhang, J.;  You, M.;  Xu, L.;  Luo, M.; Guan, J., Hierarchical microswarms with leader–follower‐like structures: electrohydrodynamic self‐organization and multimode collective photoresponses. Advanced Functional Materials 2020, 30 (16), 1908602.

54.   Liang, C.;  Zhang, L.;  Zheng, Y.;  Zhang, S.;  Liu, Q.;  Gao, G.;  Dong, D.;  Wang, Y.;  Xu, L.; Hu, X., Methanation of CO2 over nickel catalysts: Impacts of acidic/basic sites on formation of the reaction intermediates. Fuel 2020, 262, 116521.

55.   Li, J.;  Mei, X.;  Zhang, L.;  Yu, Z.;  Liu, Q.;  Wei, T.;  Wu, W.;  Dong, D.;  Xu, L.; Hu, X., A comparative study of catalytic behaviors of Mn, Fe, Co, Ni, Cu and Zn–Based catalysts in steam reforming of methanol, acetic acid and acetone. International Journal of Hydrogen Energy 2020, 45 (6), 3815-3832.

56.  Li, C.;  Zhang, C.;  Gao, G.;  Gholizadeh, M.;  Zhang, S.;  Xu, L.;  Zhang, L.;  Li, Q.; Hu, X., Interaction of the volatiles from co-pyrolysis of pig manure with cellulose/glucose and their effects on char properties. Journal of Environmental Chemical Engineering 2020, 8 (6), 104583.

57.   Han, B.;  Zhao, L.;  Wang, F.;  Xu, L.;  Yu, H.;  Cui, Y.;  Zhang, J.; Shi, W., Effect of calcination temperature on the performance of the Ni@ SiO2 catalyst in methane dry reforming. Industrial & Engineering Chemistry Research 2020, 59 (30), 13370-13379.

58.   Han, B.;  Wang, F.;  Zhang, L.;  Wang, Y.;  Fan, W.;  Xu, L.;  Yu, H.; Li, Z., Syngas production from methane steam reforming and dry reforming reactions over sintering-resistant Ni@ SiO2 catalyst. Research on Chemical Intermediates 2020, 46 (3), 1735-1748.

59.   Zhang, Z.;  Tian, Y.;  Zhang, L.;  Hu, S.;  Xiang, J.;  Wang, Y.;  Xu, L.;  Liu, Q.;  Zhang, S.; Hu, X., Impacts of nickel loading on properties, catalytic behaviors of Ni/geAl2O3 catalysts and the reaction intermediates formed in methanation of CO2. international journal of hydrogen energy 2019, 44 (9291), e9306.

60.   Zhang, Z.;  Tian, Y.;  Zhang, L.;  Hu, S.;  Xiang, J.;  Wang, Y.;  Xu, L.;  Liu, Q.;  Zhang, S.; Hu, X., Impacts of nickel loading on properties, catalytic behaviors of Ni/γ–Al2O3 catalysts and the reaction intermediates formed in methanation of CO2. International Journal of Hydrogen Energy 2019, 44 (18), 9291-9306.

61.  Zhang, L.;  Wang, F.;  Zhu, J.;  Han, B.;  Fan, W.;  Zhao, L.;  Cai, W.;  Li, Z.;  Xu, L.; Yu, H., CO2 reforming with methane reaction over Ni@ SiO2 catalysts coupled by size effect and metal-support interaction. Fuel 2019, 256, 115954.

62.   Yang, B.;  Li, Z.;  Huang, Q.;  Chen, M.;  Xu, L.;  Shen, Y.; Zhu, S., Synergetic removal of elemental mercury and NO over TiCe0. 25Sn0. 25Ox catalysts from flue gas: Performance and mechanism study. Chemical Engineering Journal 2019, 360, 990-1002.

63.   Xu, L.;  Cui, Y.;  Chen, M.;  Lian, X.;  Yang, B.;  Wu, C.-e.; Wang, F., Effects of the fabrication strategy on the catalytic performances of Co–Ni bimetal ordered mesoporous catalysts toward CO 2 methanation. Sustainable Energy & Fuels 2019, 3 (11), 3038-3049.

64.   Xu, L.;  Ao, Y.;  Guan, B.;  Xiang, Y.; Guan, J., coordination complex transformation-assisted fabrication for hollow chestnut-like hierarchical ZnS with enhanced photocatalytic hydrogen evolution. Nanomaterials 2019, 9 (2), 273.

65.   Lian, X.;  Xu, L.;  Chen, M.;  Wu, C.-e.;  Li, W.;  Huang, B.; Cui, Y., Carbon dioxide captured by metal organic frameworks and its subsequent resource utilization strategy: a review and prospect. Journal of Nanoscience and Nanotechnology 2019, 19 (6), 3059-3078.

66.  Cui, Y.;  Xu, L.;  Chen, M.;  Lv, C.;  Lian, X.;  Wu, C.-e.;  Yang, B.;  Miao, Z.;  Wang, F.; Hu, X., CO oxidation over metal oxide (La2O3, Fe2O3, PrO2, Sm2O3, and MnO2) doped CuO-based catalysts supported on mesoporous Ce0. 8Zr0. 2O2 with intensified low-temperature activity. Catalysts 2019, 9 (9), 724.

67.   Cui, Y.;  Xu, L.;  Chen, M.;  Lian, X.;  Wu, C.-e.;  Yang, B.;  Miao, Z.;  Wang, F.; Hu, X., Facilely fabricating mesoporous nanocrystalline Ce–Zr solid solution supported CuO-based catalysts with advanced low-temperature activity toward CO oxidation. Catalysis Science & Technology 2019, 9 (20), 5605-5625.

68.   Cui, Y.;  Lian, X.;  Xu, L.;  Chen, M.;  Yang, B.;  Wu, C.-e.;  Li, W.;  Huang, B.; Hu, X., Designing and fabricating ordered mesoporous metal oxides for CO2 catalytic conversion: a review and prospect. Materials 2019, 12 (2), 276.

69.   Xu, L.;  Lian, X.;  Chen, M.;  Cui, Y.;  Wang, F.;  Li, W.; Huang, B., CO2 methanation over CoNi bimetal-doped ordered mesoporous Al2O3 catalysts with enhanced low-temperature activities. International Journal of Hydrogen Energy 2018, 43 (36), 17172-17184.

70.   Wang, F.;  Han, B.;  Zhang, L.;  Xu, L.;  Yu, H.; Shi, W., CO2 reforming with methane over small-sized Ni@ SiO2 catalysts with unique features of sintering-free and low carbon. Applied Catalysis B: Environmental 2018, 235, 26-35.

71.   Deng, Z.;  Mou, F.;  Tang, S.;  Xu, L.;  Luo, M.; Guan, J., Swarming and collective migration of micromotors under near infrared light. Applied Materials Today 2018, 13, 45-53.

72.  Xu, L.;  Yang, H.;  Chen, M.;  Wang, F.;  Nie, D.;  Qi, L.;  Lian, X.;  Chen, H.; Wu, M., CO2 methanation over Ca doped ordered mesoporous Ni-Al composite oxide catalysts: The promoting effect of basic modifier. Journal of CO2 Utilization 2017, 21, 200-210.

73.   Xu, L.;  Wang, F.;  Chen, M.;  Yang, H.;  Nie, D.;  Qi, L.; Lian, X., Alkaline-promoted Ni based ordered mesoporous catalysts with enhanced low-temperature catalytic activity toward CO 2 methanation. RSC advances 2017, 7 (30), 18199-18210.

74.   Xu, L.;  Wang, F.;  Chen, M.;  Nie, D.;  Lian, X.;  Lu, Z.;  Chen, H.;  Zhang, K.; Ge, P., CO2 methanation over rare earth doped Ni based mesoporous catalysts with intensified low-temperature activity. International Journal of Hydrogen Energy 2017, 42 (23), 15523-15539.

75.   Xu, L.;  Wang, F.;  Chen, M.;  Fan, X.;  Yang, H.;  Nie, D.; Qi, L., Alkaline-promoted Co-Ni bimetal ordered mesoporous catalysts with enhanced coke-resistant performance toward CO2 reforming of CH4. Journal of CO2 Utilization 2017, 18, 1-14.

76.   Wang, F.;  Zhang, L.;  Xu, L.;  Deng, Z.; Shi, W., Low temperature CO oxidation and CH4 combustion over Co3O4 nanosheets. Fuel 2017, 203, 419-429.

77.   Wang, F.;  Xu, L.;  Yang, J.;  Zhang, J.;  Zhang, L.;  Li, H.;  Zhao, Y.;  Li, H. X.;  Wu, K.; Xu, G. Q., Enhanced catalytic performance of Ir catalysts supported on ceria-based solid solutions for methane dry reforming reaction. Catalysis Today 2017, 281, 295-303.

78.   Wang, F.;  Xu, L.;  Shi, W.;  Zhang, J.;  Wu, K.;  Zhao, Y.;  Li, H.;  Li, H. X.;  Xu, G. Q.; Chen, W., Thermally stable Ir/Ce0. 9La0. 1O2 catalyst for high temperature methane dry reforming reaction. Nano Research 2017, 10 (2), 364-380.

79.   Cho, J.;  Xu, L.;  Jo, C.; Ryoo, R., Highly monodisperse supported metal nanoparticles by basic ammonium functionalization of mesopore walls for industrially relevant catalysis. Chemical Communications 2017, 53 (27), 3810-3813.

80.   Yuan, K.;  Zhong, J.-Q.;  Zhou, X.;  Xu, L.;  Bergman, S. L.;  Wu, K.;  Xu, G. Q.;  Bernasek, S. L.;  Li, H. X.; Chen, W., Dynamic oxygen on surface: catalytic intermediate and coking barrier in the modeled CO2 reforming of CH4 on Ni (111). ACS Catalysis 2016, 6 (7), 4330-4339.

81.   Xu, L.;  Zhang, X.;  Chen, M.;  Qi, L.;  Nie, D.; Ma, Y., Facilely fabricating Mg, Ca modified Co based ordered mesoporous catalysts for CO2 reforming of CH4: The effects of basic modifiers. International Journal of Hydrogen Energy 2016, 41 (39), 17348-17360.

82.   Xu, L.;  Wang, F.;  Chen, M.;  Zhang, J.;  Yuan, K.;  Wang, L.;  Wu, K.;  Xu, G.; Chen, W., Carbon dioxide reforming of methane over cobalt‐nickel bimetal‐doped ordered mesoporous alumina catalysts with advanced catalytic performances. ChemCatChem 2016, 8 (15), 2536-2548.

83.   Xu, L.;  Wang, F.;  Chen, M.;  Zhang, J.;  Yuan, K.;  Wang, L.;  Wu, K.;  Xu, G.; Chen, W., CO 2 methanation over a Ni based ordered mesoporous catalyst for the production of synthetic natural gas. RSC advances 2016, 6 (34), 28489-28499.

84.   Xu, L.;  Gong, H.;  Deng, L.;  Long, F.;  Gu, Y.; Guan, J., Complex-mediated synthesis of tantalum oxyfluoride hierarchical nanostructures for highly efficient photocatalytic hydrogen evolution. ACS applied materials & interfaces 2016, 8 (14), 9395-9404.

85.   Wang, Y.;  Pan, F.;  Dong, W.;  Xu, L.;  Wu, K.;  Xu, G.; Chen, W., Recyclable silver-decorated magnetic titania nanocomposite with enhanced visible-light photocatalytic activity. Applied Catalysis B: Environmental 2016, 189, 192-198.

86.   Wang, F.;  Xu, L.;  Zhang, J.;  Zhao, Y.;  Li, H.;  Li, H. X.;  Wu, K.;  Xu, G. Q.; Chen, W., Tuning the metal-support interaction in catalysts for highly efficient methane dry reforming reaction. Applied Catalysis B: Environmental 2016, 180, 511-520.

87.   Wang, F.;  Xu, L.; Shi, W., Syngas production from CO2 reforming with methane over core-shell Ni@ SiO2 catalysts. Journal of CO2 Utilization 2016, 16, 318-327.

88.   Zhang, J. L.;  Wang, Z.;  Zhong, J. Q.;  Yuan, K. D.;  Shen, Q.;  Xu, L. L.;  Niu, T. C.;  Gu, C. D.;  Wright, C. A.; Tadich, A., Single-molecule imaging of activated nitrogen adsorption on individual manganese phthalocyanine. Nano Letters 2015, 15 (5), 3181-3188.

89.   Zhang, J.;  Wang, L.;  Xu, L.;  Ge, X.;  Zhao, X.;  Lai, M.;  Liu, Z.; Chen, W., Porous cobalt–manganese oxide nanocubes derived from metal organic frameworks as a cathode catalyst for rechargeable Li–O 2 batteries. Nanoscale 2015, 7 (2), 720-726.

90.   Zhang, J.;  Luan, Y.;  Lyu, Z.;  Wang, L.;  Xu, L.;  Yuan, K.;  Pan, F.;  Lai, M.;  Liu, Z.; Chen, W., Synthesis of hierarchical porous δ-MnO 2 nanoboxes as an efficient catalyst for rechargeable Li–O 2 batteries. Nanoscale 2015, 7 (36), 14881-14888.

91.  Xu, L.;  Zhang, J.;  Wang, F.;  Yuan, K.;  Wang, L.;  Wu, K.;  Xu, G.; Chen, W., One-step synthesis of ordered mesoporous CoAl 2 O 4 spinel-based metal oxides for CO 2 reforming of CH 4. RSC Advances 2015, 5 (60), 48256-48268.

92.   Wang, L. J.;  Zhang, J.;  Zhao, X.;  Xu, L. L.;  Lyu, Z. Y.;  Lai, M.; Chen, W., Palladium nanoparticle functionalized graphene nanosheets for Li–O 2 batteries: enhanced performance by tailoring the morphology of the discharge product. RSC advances 2015, 5 (90), 73451-73456.

93.   Dong, W.;  Pan, F.;  Xu, L.;  Zheng, M.;  Sow, C. H.;  Wu, K.;  Xu, G. Q.; Chen, W., Facile synthesis of CdS@ TiO2 core–shell nanorods with controllable shell thickness and enhanced photocatalytic activity under visible light irradiation. Applied Surface Science 2015, 349, 279-286.

94.   Xu, L.;  Miao, Z.;  Song, H.; Chou, L., CO2 reforming of CH4 over rare earth elements functionalized mesoporous NieLn (Ln [Ce, La, Sm, Pr) eAleO composite oxides. international journal of hydrogen energy 2014, 39 (3253), e3268.

95.   Xu, L.;  Miao, Z.;  Song, H.; Chou, L., CO2 reforming of CH4 over rare earth elements functionalized mesoporous Ni–Ln (Ln= Ce, La, Sm, Pr)–Al–O composite oxides. International journal of hydrogen energy 2014, 39 (7), 3253-3268.

96.   Xu, L.;  Miao, Z.;  Song, H.;  Chen, W.; Chou, L., Significant roles of mesostructure and basic modifier for ordered mesoporous Ni/CaO–Al 2 O 3 catalyst towards CO 2 reforming of CH 4. Catalysis Science & Technology 2014, 4 (6), 1759-1770.

97.   Miao, Z.;  Song, H.;  Zhao, H.;  Xu, L.; Chou, L., One-pot synthesis of mesoporous ZrPW solid acid catalyst for liquid phase benzylation of anisole. Catalysis Science & Technology 2014, 4 (3), 838-850.

98.   Zhao, H.;  Song, H.;  Xu, L.; Chou, L., Isobutane dehydrogenation over the mesoporous Cr2O3/Al2O3 catalysts synthesized from a metal-organic framework MIL-101. Applied Catalysis A: General 2013, 456, 188-196.

99.   Xu, L.;  Wang, Z.;  Song, H.; Chou, L., Catalytic dehydrogenation of isobutane over ordered mesoporous Cr2O3–Al2O3 composite oxides. Catalysis Communications 2013, 35, 76-81.

100. Xu, L.;  Song, H.; Chou, L., Ordered mesoporous MgO–Al2O3 composite oxides supported Ni based catalysts for CO2 reforming of CH4: Effects of basic modifier and mesopore structure. International journal of hydrogen energy 2013, 38 (18), 7307-7325.

101. Miao, Z.;  Xu, L.;  Song, H.;  Zhao, H.; Chou, L., One-pot synthesis of ordered mesoporous zirconium oxophosphate with high thermostability and acidic properties. Catalysis Science & Technology 2013, 3 (8), 1942-1954.

102. Xu, L.;  Zhao, H.;  Song, H.; Chou, L., Ordered mesoporous alumina supported nickel based catalysts for carbon dioxide reforming of methane. international journal of hydrogen energy 2012, 37 (9), 7497-7511.

103. Xu, L.;  Song, H.; Chou, L., Facile synthesis of nano-crystalline alpha-alumina at low temperature via an absolute ethanol sol–gel strategy. Materials Chemistry and Physics 2012, 132 (2-3), 1071-1076.

104. Xu, L.;  Song, H.; Chou, L., Mesoporous nanocrystalline ceria–zirconia solid solutions supported nickel based catalysts for CO2 reforming of CH4. International journal of hydrogen energy 2012, 37 (23), 18001-18020.

105. Xu, L.;  Song, H.; Chou, L., One-pot synthesis of ordered mesoporous NiO–CaO–Al2O3 composite oxides for catalyzing CO2 reforming of CH4. Acs Catalysis 2012, 2 (7), 1331-1342.

106. Xu, L.;  Li, C.;  Shi, W.;  Guan, J.; Sun, Z., Visible light-response NaTa1 xCuxO3 photocatalysts for hydrogen production from methanol aqueous solution. Journal of Molecular Catalysis A: Chemical 2012, 360, 42-47.

107. Xu, L.;  Song, H.; Chou, L., Carbon dioxide reforming of methane over ordered mesoporous NiO–Al 2 O 3 composite oxides. Catalysis Science & Technology 2011, 1 (6), 1032-1042.

108. Xu, L.;  Song, H.; Chou, L., Carbon dioxide reforming of methane over ordered mesoporous NiO–MgO–Al2O3 composite oxides. Applied Catalysis B: Environmental 2011, 108, 177-190.

  

 

Patents: 

[1] Lingjun Chou*, Leilei Xu, Huanling Song, Jian Yang, Jun Zhao, A method for preparing alpha-alumina powder (Chinese), Patent No. CN201010563132.7

[2] Chen Wei, Leilei Xu, Guoqin Xu, Kai Wu, Ordered Mesoporous CoAl2O4 Spinel Based Metal Oxides for CO2 Reforming of CH4 (ILO Ref: 14413N), filed (equal contribution).






Educational Experience

No Content
Work Experience

No Content
Social Affiliations

No Content
Other Contact Information

No Content
Research Group

No Content
Research Focus

No Content