+1210
Jiuwei Zhao
Personal Information
  • Professional Title:Associate professor
  • Gender:Male
  • Alma Mater:Nanjing University of Information Science & Techno
  • School/Department:Nanjing University of Information Science & Technology
  • Date of Employment:2021-08-29
  • Discipline:Meteorology
  • Business Address:Yapei Building, Room W302
  • Contact Information:jiuwei@nuist.edu.cn
  • E-Mail:003427@nuist.edu.cn
Other contact Information
  • ZipCode:210044
  • PostalAddress:No. 219 Ningliu Road, Nanjing, China
Profile

Education

2014.9-2019.6 Nanjing University of Information Science & Technology  Meteorology  Ph.D  

2016.9-2018.9 Univerisity of Hawaii at Manoa, USA  (Visiting Scholar)

2019.9-2021.7 Pohang University of Information Science and Technology, Postdoc

Work experience

2021.8-present Nanjing University of Information Science & Technology


Research Map:

                            Research_Map_english.png


Research Interests:

  A. Tropical  Cyclone (TC) climatology and dynamics:

  1. Internal variability impact on TCs and climate system

Screenshot 2023-12-18 at 14.07.17.png

      a. IPO impact on TCs(Zhao et al. 2018-JC; Zhao et al. 2018-SR; Zhao et al. 2020-Science Advances)

      b. Relative contribution of IPO and AMO on TCs (Working on it...)

      c. PMM triggering ENSO and its impact on WNP TCs (Wu et al. 2020-CD; Zhao et al. 2020a-GRL)

      d. NAO impact on boreal TCs and its decadal variability (Zhang et al. 2022-Frontiers; Working on it...)

      e. NPO impact on ENSO (Zhao et al. 2023a, b-npj CAS) 

  2. Climate change and TC mutation

Screenshot 2023-09-15 at 09.26.34.png

      a. Scenario 1: Warming patterns (El & La Nina-lie) and TC responses (Zhao et al. 2020b-GRL; Zhang et al. 2020-GRL)

      b. Scenario 2: Spatio-uniform warming & its impact on TCs (Zhao et al. 2023-GRL)

      c. Scenario 3: Relative importance of uniform & nonuniform warming on TCs (Working on it...)

      d. Scenario 4: Ramp up/down impact on TCs (Working on it...)

      e. Scenario 5: Mutation of TC activity under warming (Submitted)

  3. Uncertainty originated from internal variability and external forcing & its impact on TC simulations

      a. IPO & AMO impact on TC simulation & the simulation uncertainty (Song et al. 2022-JC;  Zhao et al. 2022-JGR)

      b. Atmospheric modes fiddling ENSO-TC relastionship in the WNP (Submitted)

      c. Upscale feedback of XX to seasonal climate & its contribution to TC simulation uncertainty (Working on it...)

                              Research_Map_E-1.png

      d. Internal variability (XX) & its impact on TC decadal simulations (Working on it...)

      e. Internal variability (XX) induced TC mutation in a warmer climate (Working on it...)

  4. TVE (Tropical Volcanic Eruption)

      a. Impact of Tropical Volcanic Eruption on tropical cyclones based on large ensemble high-resolution simulations.

      b. How Tambora eruption affect the tropical cyclones? Difference between present-day and pre-industry simulations and the volcanic contributions.

      c. Impact of extra-tropic volcanic eruption on tropical cyclones.

  5. SD (Seasonal dependence)

      a. Combination mode of ENSO and annual cycle impact on tropical cyclones (Present day and global warming)

      b. Seasonal dependence of landfalling tropical cyclone trend


  B.High Resolution Simulation:

  6. Multi-scale simulation 

  7. Seasonal Prediction based on HIRAM and CESM

  8. Simulation Uncertainty (/RegCM model)

      a. Hindcast (HIRAM-C180)

Screenshot 2023-09-03 at 00.35.13.png

Tropical cyclone genesis (left) and track (right) in current (upper) and warmer climates (bottom)

      b. Ensemble simulation (RegCM-Yuqing Wang)

Screenshot 2023-09-03 at 00.41.12.png

Observed and RegCM-simulated TC tracks from 1982-2021

      c. Prediction: Genesis、Track & Intensity (HIRAM+Sintex)

         1. SST prediction from Aug 2023 to Dec 2024 (with the helps of Luqing Ma and Song Yang)

            

de2598e61d9f7ecb027ba897b40e140b.png


      d. RI (WRF)

WechatIMG891.jpg

TC-resolved climate simulation based on WRF

      e. LES (CM1-Bryan)

Screenshot 2023-09-06 at 14.26.51.png

TC intensity and RMW in axisymmetric simulations


Selected publication (# co-first author* co-corresponding author, Bule color : Representative papers)

2025年

           Comming Soon.

2024年

021. Zhao* J, Zhan Ruifen, Suzana Camargo, Li Yue, Sun Weiyi & Liu Fei. Increase of tropical cyclone genesis frequency after tropical vocanic eruptions. (To be submitted)

020. Zhan R, Zhao* J,  Yuqing Wang, Jong-Seong Kug and Dae-hyun Kim. Contribution of intraseasonal variability to uncertainty in simulating seasonal tropical cyclone activity over the Northwest Pacific. (Submitted to JC on May 3)

019. Wang F, Zhang L, and Zhao* J. Distinct future changes of ENSO-induced tropical cyclone activities between atmosphere-only and coupled models in CMIP6-HighResMIP. (Submitted to JGR on Mar 13)

018. Zhao J, Zhan* R, Yuqing Wang, Shang-Ping Xie, L. Zhang and M. Xu. Lapsed El Niño impact on tropical cyclone genesis frequency over the Northwest Pacific and North Atlantic in 2023. (Submitted to NC on Feb 12)

017Zhao J, Zhan* R, Dae-Hyun Kim, Jong-Seong Kug, Long J, Zhang L and Ma X. Distinct Modulation of Atlantic Multidecal Oscillation and Interdecadal Pacific Oscillation on tropical cyclone precipitation over the western North Pacific, Geophysical Research Letters. (2024a)

2023年:

016. Shi L., ZhanR., Zhao* J.  and Jong-Seong Kug.: Mutating ENSO impact on Northwest Pacific tropical cyclones under global warming.  Geophys. Res. Lett. (2023e).

015Zhao, J., Zhan R., Hiroyuki MurakamiYuqing WangShang-ping Xie, Guo Y., Zhang L.: Atmospheric mode fiddling the simulated ENSO impact on tropical cyclone geneiss over the Northwest Pacific. npj Climate and Atmospheric Science. (2023d). 

014Zhao, J., F. Wang, R. Zhan, Y. Guo, X. Huang, and C. Liu: How Does Tropical Cyclone Genesis Frequency Respond to a Changing Climate? Geophys. Res. Lett., 50, e2023GL102879. (2023c)

013Zhao, J, ——, ——, ——, and ——: Part II model support on a new mechanism for North Pacific Oscillation influence on ENSO. Npj Clim. Atmospheric Sci., 6, 16. (2023b)

012Zhao, J., Mi-Kyung. Sung, J.-H. Park, J.-J. Luo, and Jong-Seong Kug, 2023a: Part I observational study on a new mechanism for North Pacific Oscillation influencing the tropics. Npj Clim. Atmospheric Sci., 6, 15. (2023a)

2022年:

011Zhao J., Zhan*, R., Wang*, Y., Jiang L., & Huang X. A multiscale-model-based near-term prediction of tropical cyclone genesis frequency in the Northern Hemisphere. Journal of Geophysical Research: Atmospheres, 127, e2022JD037267 (2022c).

010. Song, K., Zhao*, J., Zhan*, R., Tao. L., & Chen., L. Confidence and Uncertainty in simulating tropical cyclone long-term variability using HighResMIP. Journal of Climate, 35, 2829-2849 (2022b).

009. Zhang, L., X. Yang, and J. Zhao*: Impact of the spring North Atlantic Oscillation on the Northern Hemisphere tropical cyclone genesis frequency. Front. Earth Sci., 10, 829791 (2022a).

2021年:

008. Zhang#, L., Zhao#, J.Kug*, Jong-Seong, Geng, X., Xu*, H., Park, J.-H. & Zhan, R. Pacific warming pattern diversity modulated by Indo-Pacific sea surface temperature gradient. Geophysical Research Letters, e2021GL095516 (2021).

2020年:

007. Wu, Q., Zhao*, J., Zhan, R. & Gao, J. Revisiting interannual impact of the Pacific Meridional Mode on tropical cyclone genesis frequency in the western North Pacific. Climate Dynamics (2020).

006.  Zhao, J.Kug*, Jong-SeongAn, Song-Il. & Park, J.-H. Diversity of North Pacific Meridional Mode and its distinct impact on El Niño and Southern Oscillation. Geophysical Research Letters47, e2020GL088993 (2020c).

005. Zhao, J., Zhan*, R. & Wang, Y. Different responses of tropical cyclone tracks over the western North Pacific and North Atlantic to two distinct sea surface temperature warming patterns. Geophysical Research Letters47, e2019GL086923 (2020b).

004. Zhao#, J., Zhan#, R., Wang*, Y., Xie, Shang-Ping. & Wu, Q. Untangling impacts of global warming and Interdecadal Pacific Oscillation on long-term variability of North Pacific tropical cyclone track density. Science Advances6, eaba6813 (2020a).

2020年以前:

003. Zhao, J., Zhan*, R. & Wang, Y. Global warming hiatus contributed to the increased occurrence of intense tropical cyclones in the coastal regions along East Asia. Scientific Reports, 8, 6023 (2018b)

002. Zhao, J., Zhan*, R. & Wang, Y., and H. Xu : Contribution of Interdecadal Pacific Oscillation to the recent abrupt decrease in tropical cyclone genesis frequency over the western North Pacific since 1998. J. Clim.https://doi.org/10.1175/JCLI-D-18-0202.1. (2018a)

001Zhao, J., Zhan*, R. & Wang, Y. and L. Tao, 2016: Intensified Interannual Relationship between Tropical Cyclone Genesis Frequency over the Northwest Pacific and the SST Gradient between the Southwest Pacific and the Western Pacific Warm Pool since the Mid-1970s. J. Clim., 29, 3811–3830, https://doi.org/10.1175/JCLI-D-15-0729.1.




Reserach Focus
  • [1] A. 台风气候动力学: 1. 内部变率对热带气旋活动和气候系统影响的机理 a. IPO对热带气旋活动的影响 (Zhao et al. 2018-JC; Zhao et al. 2018-SR; Zhao et al. 2020-Science Advances) b. IPO和AMO的相对重要性 (Working on it...) c. PMM对ENSO的触发作用及对西太台风的影响 (Wu et al. 2020-CD; Zhao et al. 2020a-GRL) d. NAO对北半球热带气旋活动的影响(Zhang et al. 2022-Frontiers in Earth Science) e. NPO对ENSO的触发作用 (Zhao et al. 2023a, b-npj Climate and Atmospherice Science) 2. 气候变化背景下热带气旋活动变异的可能机制 a. 情景1: 不同增暖型(El和La型) 演变机理及其对台风的影响 (Zhao et al. 2020b-GRL; Zhang et al. 2022-GRL) b. 情景2: 均匀增暖对热带气旋的影响 (Zhao et al. 2023-GRL) c. 情景3: 均匀增暖和非均匀增暖的相对重要性 (Submitted-collaboration) d. 情景4: Ramp up/down (Working on it...) e. 情景5:全球变暖下热带气旋的变异 (Submitted) 3. 内部变率和外强迫对热带气旋模拟的不确定性机理研究和定量分析 a. IPO和AMO模拟对北半球热带气旋的影响及其存在的不确定性(Song et al. 2022-JC; Zhao et al. 2022-JGR) b. 内部变率(xx)对模拟ENSO-台风变化关系不确定性的机理 (Submitted) c. 内部变率(xx)的升尺度反馈,及其对台风模拟的不确定性影响 (Working on it...) d. 内部变率(xx)对台风年代际模拟不确定性的贡献(Working on it...) e. 内部变率(xx)对全球变暖背景下台风模拟的不确定性影响(Working on it...)
  • [2] B.高分辨率数值模拟: 4. 多时间尺度因子(季节内-年际-年代际-长期变化)对台风活动(生成-路径-强度-降水等)影响的机理 5. 利用高分辨率模式(HIRAM-0.50º/CESM-0.23ºx0.31º)对台风显式的季节预测和气候模拟研究 6. 台风气候数值模拟的不确定性来源分析 (依赖于高分辨率模式模拟/RegCM model) 7. WRF/CM1 a. Hindcast模拟(HIRAM-C180) b. 多集合成员模拟(RegCM-Yuqing Wang) c. 利用预测海温做季节预测:生成、路径和强度预测(HIRAM+CESM) d. 台风的快速增强(WRF) e. LES (CM1-Bryan)
Social Affiliations

    No Content

Education Background
Work Experience
  • 南京信息工程大学 | 气象学 | 博士研究生 | Doctoral degree
  •  大气科学学院 | 南京信息工程大学 
Research Group

No Content