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Abstract—The joint sparse representation (JSR)-based classi-
fier assumes that pixels in a local window can be jointly and
sparsely represented by a dictionary constructed by the training
samples. The class label of each pixel can be decided according
to the representation residual. However, once the local window of
each pixel includes pixels from different classes, the performance
of the JSR classifier may be seriously decreased. Since correlation
coefficient (CC) is able to measure the spectral similarity among
different pixels efficiently, this letter proposes a new classification
method via fusing CC and JSR, which attempts to use the
within-class similarity between training and test samples while
decreasing the between-class interference. First, the CCs among
the training and test samples are calculated. Then, the JSR-based
classifier is used to obtain the representation residuals of different
pixels. Finally, a regularization parameter A is introduced to
achieve the balance between the JSR and the CC. Experimental
results obtained on the Indian Pines data set demonstrate the
competitive performance of the proposed approach with respect
to other widely used classifiers.

Index Terms— Correlation coefficient (CC), hyperspectral
imagery, joint sparse representation (JSR).

I. INTRODUCTION

YPERSPECTRAL images (HSIs) have the ability to
provide spatial structures and the spectral signatures of
different materials. Taking advantage of those useful informa-
tion into account, HSI remote sensing has been widely used
in many applications, such as environmental monitoring and
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precision agriculture. Some popular classifiers, such as support
vector machine (SVM) [1] and relevance vector machine [2],
have been widely used in HSI analysis.

Recently, sparse representation (SR), serving as a powerful
image processing tool, has been applied for HSI classifica-
tion [3]. SR relies on the assumption that pixels from the
same class are supposed to hold similar spectral characteristics,
and thus, a test sample can be linearly represented by a
small number of training samples from the same class. How-
ever, the traditional SR approach just considers the spectral
information of a test pixel and ignores the spatial neighbors
surrounding the test pixel. Based on the assumption that pixels
from a local region usually have similar spectral materials and
characteristics, Chen et al. [4] proposed a JSR-based classifi-
cation (JSRC) algorithm, which takes spatial information into
account by representing the pixels in a local window jointly,
so as to obtain a better classification performance. In [5]
and [6], some sparse-based classifiers, such as the kernel-based
SR and the l>-norm regularized sparse subspace clustering,
have been proposed which show much better performance.
However, a common limitation of those local window-based
methods is that the local windows may include pixels from
different classes. In other words, pixels in the edge areas
are suitable with small-sized windows, whereas a large-sized
window is preferred for smooth areas. To address this problem,
Fang et al. [7] proposed the multiscale adaptive SR (MASR)
method, which obtained an improved performance. Other
advancing tools, such as the adaptive mean-shift analysis
method [8], are also an effective way to solve this problem.

A K nearest neighbor (KNN) classifier is one kind of
classical classification methods. It makes full use of the
nonlocal information in the HSI by finding a predefined
number of training samples which are closest in Euclidean
distance to the test sample and then assign the test sample
with the label which has the largest number of nearest training
samples. Several extensions of this classifier have been studied.
In 2015, Cui and Prasad [9] proposed a class-dependent SR
classification (CDSRC) for HSI classification, which effec-
tively combines the ideas of SR and KNN classifier in a
classwise manner to exploit both correlation and Euclidean
distance among training and test samples. Li er al. [10]
proposed a KNN and collaborative representation (CR)-based
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classifier which achieves better classification performance than
several previous algorithms, such as the original KNN clas-
sifier. In [11], a kernel-fused representation-based classifier
has been proposed for HSI classification, which combines SR
and CR into an effective kernel fused representation-based
classification framework.

One limitation of the KNN classifier is that it uses the
Euclidean distance which is not always the optimal option
for measuring the distance between two hyperspectral pixels.
In this letter, it is found that the correlation coefficient (CC)
can recognize those pixels with strong relationships effectively.
Therefore, this letter proposes a classification method by com-
bining CC and JSR (CCJSR) for HSI. It can be accomplished
by three main steps. In the first step, a test sample can be linear
represented by the atoms in an over complete dictionary and
sparse vectors. In this step, JSR is used to produce the residual
for every class. In the second step, CC is used to calculate the
degree of similarity between the training and test samples.
In the last step, a decision function is used for classification
based on the residual of JSR and the degree of correlation. The
proposed method combines two major factors, i.e., spectral
similarity and local spatial consistency, for HSI classification.
The major contributions are concluded as follows. First, this
letter introduces the CC to model the spectral similarity among
the training and test pixels. Second, by fusing the CC and JSR,
the proposed CCJSR method can effectively overcome within-
class variations and between-class interference among pixels.
At last, an effective decision fusion strategy is proposed to
achieve the balance between CC and JSR. Experimental results
performed on a real hyperspectral data set demonstrate the
effectiveness of the proposed method in terms of classification
accuracies.

II. RELATED WORK
A. Joint Sparse Representation

Based on the assumption that neighboring hyperspectral
pixels usually consist of similar materials and share the same
spectral characteristics, the JSRC method was proposed in [4],
and the specific details are shown as follows.

The JSRC model assumes that pixels from the same class
commonly represent the same spectral characteristics. Assume
that two neighboring hyperspectral pixels y; and y, have
similar materials, the SR of y; can be written as

Y1 = Xay = Q1,01 Xuy + O, 10X un + -+ A1, X pip (1)

where the index set {u1, u2, ..., un} is the support of the
sparse vector aj, and n = | a; ||g denotes the {p-norm (or
sparsity level) of aj. Since y; and y, consist of similar
materials, y, can be approximated by the same index set of
training samples {x,,, X,,,...,X,,} with a different sparse
VeCtor {02, 1115 02,155 - - - » 02, 11, }

Yo =Xas = a2, Xy, + 02,5 Xp, + 0 02,0, X, (2)

For the JSRC, it is assumed that the m pixels in a \/m x \/m
window are all from the same class j. In this situation,
the training samples X/ are HSI pixels from class j. a/ is a
sparse vector whose entries correspond to the training samples
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X/. The full X = [X! ... X/... X¢] consists of all the
subdictions of total c¢ classes. Therefore, the unknown test
samples Y = [y{ yé ... yi] which consist of those pixels in
a small window can be represented as

Y = [y{ y% y{n] = [Xja{ Xjag Xja,],;]
=x'-. X/... X700 --- B/ 01" = X8
3)
where y/ = X/a/. Since the number of columns in the

subdictionary X/ is much less than the number of columns
in dictionary X, the number of rows in ﬁj is much less than
the number of rows in B. Therefore, B is a sparse vector
matrix with only a few nonzero rows which can be obtained
as follows:

A

B =argmin|[Blo st. Y=X-8 4)

where ||B]lo represents the number of nonzero rows of 8. The
optimization problem in (4) can be relaxed to an inequality
problem

A

B =argmin||XB — Y[ s.t. [Bllo=n (5)

where 7 is the given sparsity level. The simultaneous orthogo-
nal matching pursuit method can be used to solve the problem
in (5). Once B is obtained, the reconstruction residual errors-
based classification of the central pixels can be described as

Class(y) = argmin r/(y) (6)
j=12,...,c
where r/(y) = |Y — X/ - B/, j = 1,2,...,c is the

corresponding reconstruction residual errors of the jth class.

B. Correlation Coefficient

The CC is an effective metric that determines whether two
variables are associated. In this letter, the CCs among different
pixels are used to determine whether these pixels belong to
the same class. To objectively measure the correlation of two
pixels, A and B with d dimension spectral values the CC can
be calculated as follows:

_ cov(A, B)
p= Jvar(A) - /var(B)
d
Ez=1 (a; — ug)(b; — up)

) \/E?:l (a; — ua)2 : \/E‘Zj:l (b, — ub)2

where var(A) and var(B) refer to the variance of A and B.
A = a)l B = (bl e = (/)X az up =
(1/d) Zle b, and |p| < 1. More generally, p > 0 means
that the positive correlation and vice versa. The closer the
absolute value of p is to 1, the stronger the relationship of the

two vectors is.

@)

III. PROPOSED APPROACH
A. Motivation

Fig. 1 shows a graphical example illustrating the motiva-
tion behind the proposed method. There are three randomly
selected training samples (from the 14th class, the second
class, and the 16th class) and one test sample from the
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Fig. 1. (a) Spectral values of the four randomly selected samples (three for
training and one for test). (b) CCs among the test sample 7 and the three
training samples.

14th class. Fig. 1(a) and (b) shows the spectral values of
those pixels, and the CCs among the test and the three training
samples, respectively. As shown in Fig. 1(b), it can be seen
that the pixels in the same class usually have high correlation
with each other and vice versa. However, in the case of high
spectral similarity among different materials (caused by some
disruptive factors, such as spectral mixing, shadow, and so
on), the CC itself is still not able to achieve an efficient
classification performance.

The JSR-based method simply assumes that pixels in a
local neighborhood are composed of the same material. This
assumption is not always correct, since some pixels in a
local region may have quite different spectral curves and thus
influence the performance of the JSR classifier. Therefore,
fusing CC and JSR is expected to be an effective measure to
distinguish those pixels with different spectral properties while
overcome the influence caused by those disruptive factors. In
this letter, the CC is introduced into the JSR classifier, so as
to combine the local spatial information and nonlocal spectral
information in an effective way.

B. CCJSR Algorithm

This letter introduces an HSI classifier that combines JSR
and CC. The proposed CCJSR is composed of two components
(CC and JSR). The major steps of the proposed method can be
concluded in Algorithm 1. First, we calculate the CCs among
the training and test samples. Second, the representation resid-
uals are calculated using the JSR. Third, the class label of each
pixel is determined based on the defined decision function. The
details are shown as follows. ' '

Assuming X/ = [X{ Xé X,ﬁ/_], in which X,ﬁ/_ belongs
to jth class, and the jth class consists of k; training samples.
This letter first calculates the CCs among the training and test
samples. For one test sample y and one training sample X,ﬁ/_,

the CC p,{j can be calculated as follows:
cov (X,{/ , y)
var(X,{j) - Jvar(y)

EZ=1 I:(X]j(])z - MX/{:I : [()’)z - My]
- d j 12 d 2 ®
\/Ezzl [(ij)z - “XL] : \/Zz:l ()2 — uyl

Jo_
Pi; =

where d represents as the dimension of the samples.
Var(X',i/_) and var(y) refer to the variances of X',’(/_ and y.

And uyg = ()Y (X)) uy = (1/d) T4 0)-.

pl=1pispys Pl )

Then, for the training samples in each class, the matrix p/
is sorted in descending order based on the CCs of different
training samples. After that, this letter calculates the mean of
N largest pj as the CC cor/. Suppose that N largest p/ consist
of {p{,p3, ..., px}, the CC cor/ can be calculated by

1 , .
corfzﬁ(p{—i—pé—i—---—}—p[]\,). )

Algorithm 1 CCJSR
Inputs: Training set X; = {(x1,/1), -, &z, Jo)} €
(Rd x j) " (d is the number of spectral band, x; refers to the
rth training sample, j, is the class label of x; and class label
j=1{1,2,---,c}); testsamples Y = (y1, -+, yn) € R; the
HSI I; sparsity level S;; number of nearest neighbors N; the
regularization parameter 4; and joint neighboring scale S,.

Step 1 CC
fori=1,---,n
for j=1,---,c
Calculate the CC between
the training and test sample based on (8);
end for _
Calculate the mean of N largest pi] as the
jth class CC corij
end for
Step 2 JSR
fori=1,---,n
Update joint neighboring scale S, and calculate
the sparse coefficient by SOMP:
for j=1,---,c .
Calculate the residual rij based on (12);
end for
Calculate the norm of the jth class residual
=1,
end for
Step 3 Determine the class label of y; based on (13)

Outputs: The classification map.

Next, we calculate the residual of the JSR. The training
samples X = [X' X% ... X/] are used as the dictionary for
representation, and o/ = [a{ aé a,ﬁj] is a sparse vector
related to X/. The pixel y can be represented by a linear
combination of these training samples

y=X/al. (10)

To obtain the sparsest solution, the sparse matrix &/ can be

obtained as follows:

@’ =argmin|y — X/a’ |2 s.t. [|e’ o < 7.

(1)
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Fig. 2. (a) False-color composite of the Indian Pines image.
(b) and (c) Reference data for the Indian Pines image.

After calculating the sparse matrix &’ the residual of each
class r/ can be calculated via

)=y -Xé& ], j=1,2,...,c (12)

Finally, this letter combines the CC and the JSR in the
decision level to exploit both the CCs among training and
test samples and the representation residuals. By introducing a
regularization parameter A into the decision function, the class
label of the test pixel y can be obtained as follows:

Class(y) = argmin (r/ (y) 4+ A - (1 — cor’/ (y)))
j=12,...,c

13)
where cor/ € [0, 1], which represents the CCs among pixels.

IV. EXPERIMENTAL RESULTS
A. Data Set

One real hyperspectral data set is used for experimen-
tal evaluation in this letter. The Indian Pines image shows
the Indian Pines Test Field in the northwest of Indiana,
which is captured by the Airborne Visible/Infrared Imaging
Spectrometer remote-sensing device. The image is of a size
145 x 145 pixels with a spatial resolution of 20 m per pixel
and 220 wave bands. With 20 water absorption wave bands
removed, the 200 bands are used in the experiment. As the
scene is captured in June, some crops, such as corn and
soybean, are still in the early stage of growth. In the reference
classification map obtained from site exploration, the scene is
divided into 16 different classes. Fig. 2 indicates the false-
color composite of the Indian Pines image, the corresponding
reference date, and color labels.

B. Parameter Analysis

Here, the relationship among overall accuracy (OA),
the joint neighboring scale S., and the sparsity level §; is
analyzed in Fig. 3(a). As S, is increasing, the classification
accuracy increases first and then decreases. This phenomenon
indicates that the joint representation scheme is useful, since
neighboring hyperspectral pixels usually consist of similar
materials and share the same spectral characteristics. However,
when the joint neighboring scale S, is very large, the samples
belonging to different classes may be included into the same
local window and thus results in the decrease of classifica-
tion accuracy. In addition, with the parameter S; increasing,
the OA decreases slowly. When S, is set to 6 and S is set
to 2, the proposed method obtains the highest classification
accuracy. Therefore, S, = 6 and S; = 2 are set as the default
parameters setting for the proposed method.
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Fig. 3. (a) Analysis of the joint neighboring scale S, and sparsity level S;.
(b) Analysis of the number of nearest neighbors N and regularized
parameter A.

The number of nearest neighbors N and the regularized
parameter A are also important parameters for the proposed
CCIJSR. Fig. 3(b) shows the performance of the proposed
method with different values of N and A. The parameter
N is selected from the interval of {0, 2, 4, 6, 8, 10}, and
the parameter A is selected from the interval of {0, 5, 10,
15, 20, 25, 30}. If the regularization parameter A is set
to 0, it means that only the residual information of JSR is
exploited during the classification stage. In addition, with
J increasing, the relationship between CC and JSR is also
changing. As shown in Fig. 3(b), the proposed method can
achieve the highest accuracy (95.85%) when A equals to 0.6.
The performance is much better than those obtained when
A = 0, which can demonstrate the importance of using
the CC. Alternatively, as N is increasing, the classification
accuracy increases first and then decreases. The reason is
that those pixels belonging to the same class are usually
composed of similar materials but sometimes influenced by
shadow and other factors, calculating the mean of CC among
all the training and test samples will decrease the classification
accuracy. Therefore, N = 4 is used as the default parameter
setting.

C. Comparisons With Other Approaches

In this section, the proposed method is compared with
the SVMs method [1], SRC method [3], the joint sparse
representation classification (JSRC) method [4], the class-
dependent SRC (CDSRC) method [9], and the edge-preserving
filtering (EPF) method [12]. The SVM is implemented by
using the Gaussian kernel with fivefold cross validation. Other
methods are implemented with the default parameters given
by the authors. The experiment has been repeated ten times to
obtain the accuracies in Table I.

The experiment is performed on the Indian Pines data set
and 10% of the labeled data are randomly selected as training
samples and the remaining 90% of data are used as test
samples. The classification performances and classification
maps of the compared methods are summarized in Table I
and Fig. 4. It can be seen that, for some classes, such as
Grass_T, Grass_P, Hay_W, Soybean_M, and Woods, the class
accuracies of the proposed method are much higher than 96%.
In addition, for some classes with small number of training
samples, such as Grass_M and Oats, the proposed method
can achieve class accuracies of 98.26% and 88.00%, whereas
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TABLE I
CLASSIFICATION ACCURACY (IN PERCENT) OF THE INDIAN PINES IMAGE IN THE SVM, SRC, JSRC, CDSRC, EPF, AND CCJSR METHODS

The number of training samples is 10% of the reference data.

Class Training  Test SVM SRC JSRC CDSRC EPF CCJSR
12 34 68.92(12.0) 64.56(12.5)  93.99(5.01)  100.0(0.00) 95.60(11.3)  95.29(3.00)
140 1288  77.92(2.16)  54.55(2.65)  92.64(4.66)  81.41(2.18)  95.74(2.05)  96.04(0.90)
83 747 79.04(3.97)  50.82(2.21) 87.23(16.8) 86.84(3.07)  95.68(2.37) 95.05(1.62)
Corn 20 217 67.92(3.99) 36.47(6.81) 92.87(5.62)  95.37(2.82) 95.60(2.79) 88.57(4.43)
| Grass_P | 50 433 88.65(3.03) 82.23(3.16)  93.56(5.19)  95.41(1.11) 98.37(1.19)  97.69(1.70)
Grass_T 73 657  89.13(1.91) 91.10(2.20)  93.68(4.83)  96.00(0.69)  95.29(2.27)  99.63(0.21)
Grass_M 5 23 95.43(6.52)  81.74(9.63)  96.38(3.45)  10.00(31.6)  100.0(0.00)  98.26(3.48)
| Hay W | 50 428  97.34(0.92) 91.00(2.81)  92.27(10.4)  93.90(0.47)  100.0(0.00)  100.0(0.00)
Oats 5 15 57.25(10.6)  56.00(17.3)  91.09(7.39)  10.0031.6)  90.00(31.6)  88.00(9.80)
Soybean_N 100 872 78.75(1.64) 66.41(2.71)  93.96(4.99)  85.52(2.53) 92.42(5.75)  93.78(1.44)
250 2205  81.13(1.38)  71.92(1.83)  92.28(4.73)  75.29(1.29)  88.38(3.48)  95.91(0.24)
60 533  77.75(2.66) 43.82(3.96)  87.02(16.8)  95.35(2.06) 92.31(5.34)  91.97(2.55)
20 185  93.69(3.22) 90.35(3.67) 94.48 (4.92)  100.0(0.00)  100.0(0.00)  99.14(0.55)
130 1135 92.79(1.39)  89.41(1.78)  93.29(5.11)  92.69(1.13)  95.58(2.54)  99.42(0.33)
Buildings 40 346 74.45(5.28) 36.47(2.96)  93.81(4.89)  89.00(2.09) 95.07(1.89)  90.52(3.13)
10 83 99.15(0.74)  89.52(3.67)  94.27(6.27)  99.30(0.99) 98.71(0.09)  87.23(3.46)
OA 83.09(0.40)  68.86(0.93)  94.31(0.46)  85.63(0.55) 94.52(1.13)  96.00(0.46)
AA 82.46(1.78)  68.52(1.17)  92.91(1.32)  81.63(2.71) 95.55(1.94)  95.44(0.52)
Kappa 80.65(0.43)  64.43(1.06)  93.50(0.53)  83.40(0.66)  93.58(1.30)  94.78(0.94)

(@)

Fig. 4. Classification results (Indian Pines) obtained by (a) SVM
method (83.09%), (b) SRC method (68.86%), (c) JSRC method (94.31%),
(d) CDSRC method (85.63%), () EMP method (94.52%), and (f) CCISR
method (96.00%).

the class accuracies of other compared methods are much
lower than it. Furthermore, the proposed method can achieve
an OA of 96.00%, whereas the OA of the original JSRC is
only 94.31%, which can demonstrate the advantage of taking
CC among training and test samples into account. Generally,
the proposed method always shows the best classification
performance in terms of the highest OA, AA, and Kappa.

V. CONCLUSION

This letter proposes an HSI classification method based on
JSR and CC. Considering that JSRC may include between-
class interference, CC is introduced to model the spectral
similarity among pixels in the CCJSR method. Compared
with the original JSRC, the CCJSR method can make full
use of the spatial contextual information and spectral simi-
larity information at the same time. Furthermore, a decision
function is introduced to achieve the balance between JSR
and CC. Experiments performed on the Indian Pines data set
demonstrate that CCJSR can improve the performance of the

JSRC effectively. The major objective of this letter is to
demonstrate that spectral similarity among the training and
test pixels is an important factor for HSI classification. It is
obvious that, besides the CC metric, other spectral measures
such as spectral angle measure can also be used in the
proposed framework. Whether these metrics could lead to
further improvement will be a future research topic.
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