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Abstract— In this letter, a novel spatial peak-aware col-
laborative representation (SPaCR) method is proposed for
hyperspectral imagery (HSI) classification, which introduces
spectral–spatial information among superpixel clusters into reg-
ularization terms to construct a new collaborative representation
(CR)-based closed-form solution. The proposed method is com-
posed of the following key steps. First, the raw HSI is clustered
into many superpixels according to an oversegmentation strategy.
Then, cluster pixels are determined based on spectral–spatial
correlation between pixels within each superpixel. Next, spectral
distance and spatial coherence of superpixel clusters corre-
sponding to training samples and testing pixels are fused to
define differences between pixels. Finally, the difference infor-
mation between clusters as a spectral–spatial feature-induced
regularization term is incorporated into the objective function.
Experimental results on the Indian Pines and the University of
Pavia HSIs indicated that the proposed SPaCR method, without
any preprocessing and postprocessing, outperforms well-known
and state-of-the-art classifiers on the limited labeled samples.

Index Terms— Collaborative representation (CR), hyperspec-
tral imagery (HSI), spatial peak regularization, spectral–spatial
classification, superpixel.

I. INTRODUCTION

HYPERSPECTRAL imagery (HSI) can capture the char-
acteristics of ground coverings in remotely sensed scenes

via hundreds of narrow and continuous spectrum bands, and
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thus, the development of well-suited technologies for var-
iedly remote-sensing applications has attracted the interest of
researchers, such as classification [1], [2].

Over the years, a lot of collaborative representation
(CR)-based supervised learning algorithms have been suc-
cessfully introduced into HSIs classification, which effec-
tively solves the problem of ground cover identification and
classification at the pixelwise level [3]–[9]. Li et al. [3]
and Li and Du [4] proposed advanced CRCs by design-
ing l2-norm minimization-derived closed-form solution to
estimate representation weight and introducing spatial mean
feature constrained by the fixed window into the spectral
feature of samples, respectively. Moreover, driven by the
feasibility of kernel tricks in the HSI, Li et al. [5] pre-
sented a kernel CR with Tikhonov regularization (KCRT),
and Ma et al. [6] developed a discriminative kernel CR and
a Tikhonov regularization method (DKCRT). The above-
mentioned two KCR-based classifiers aim to employ the
kernel trick to promote the spectral separability of pixels,
so as to improve the classification accuracy of the CR
model.

Differing from the above approaches, Jiang et al. [7]
defined a classifier via spatial-aware collaborative represen-
tation (SaCR); the key technology behind their work is
that the spatial and spectral features are both utilized to
generate the distance-weighted regularization terms. In [8],
a structure-aware CR with the Tikhonov regularization
(SaCRT) method is proposed to consider both label infor-
mation of training samples and spectral signatures of testing
pixels to estimate more discriminative representation coef-
ficients. Furthermore, Karaca [9] presented a classifier by
embedding domain transform filter (DTF) into the process-
ing of SaCR; experimental results proved the method can
achieve good classification performance at limited labeled
data.

However, these CR-based methods fail to consider the
spectral–spatial information among superpixel clusters. In fact,
the clusters carry numerous interesting information that can
smooth salt–pepper noise in the final result and improve the
classification accuracy of the CRC. Inspired by this, this letter
develops a novel spatial peak-aware collaborative represen-
tation (SPaCR) method for HSI classification, which directly
introduces spectral–spatial information among superpixel clus-
ters into regularization terms to construct a new CR-based
closed-form solution. Specifically, experimental results on two
HSI benchmark datasets indicated that the proposed method
without any preprocessing and postprocessing can achieve
promising classification accuracy even with a very limited
number of training data with respect to several well-known
and state-of-the-art classifiers.
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II. RELATED WORK

A. CR in HSI Classification

Assume that hyperspectral data D are divided into the
training set X = {X1, X2, . . . , Xc} ∈ R

m×n and the testing set
Y , c is the number of class, m refers to spectral dimension of a
sample, n represents the total number of training sample, and
X i = {xi1, xi2, . . . , x ini } ∈ R

m×ni is a subdictionary, which is
composed of ni samples from the i th class. According to the
CR rule, a test pixel belonging to i th class can be represented
as

y ≈
ni∑

j=1

xi jαi j (1)

where αi j is a representation coefficient (weight) correspond-
ing sample xi j in subdictionary X i .

If the dictionary consists of all training samples, then the
test pixel y ∈ R

m can be expressed as

y = ŷ + e =
c∑

i=1

ni∑
j=1

xi jαi j + e ≈
c∑

i=1

ni∑
j=1

xi jαi j = Xα (2)

where e refers to residual generated by noise. Thus, the weight
vector α can be obtained by solving a constrained optimization
problem, as follows:

α∗ = arg min
α

�α�2
2. (3)

Meanwhile, there is the following relationship:
� y − Xα� ≤ ε (4)

where ε represents an error constraint. Then, we can use the
Lagrangian equation to transform the above problem as

α∗ = arg min
a

�y − Xα�2
2 + λ�a�2

2 (5)

where λ is a regularization parameter, which can be utilized
to balance relationship between reconstruction residual and
regularization term. Once the optimal weighted coefficient is
obtained, the label of the test sample can finally be determined
by the following expression:

Class(y) = arg min
i=1,2,...,c

∥∥y − X iα
∗
i

∥∥2
2. (6)

Besides, to make the representation more flexible,
Li et al. [3] proposed a nearest regularized CR model, which
introduces a regular term of locality constraint into the
solution (5) by granting various freedom to training samples
based on their Euclidean distances from y

α∗ = arg min
a

� y − αX�2
2 + λ��a�2

2 (7)

where � refers to a biasing Tikhonov matrix defined by �i =
�y − X i�2. If the distance between a training sample xi and
the test pixel y is large, xi will be given a small representation
coefficient αi , and vice versa.

To take into consideration the spatial information of HSI,
Li and Du [4] presented a joint CR model, which use spatial
average strategy to represent each sample, as follows:

α∗ = arg min
a

∥∥ ȳ − α X̄
∥∥2

2 + λ�a�2
2 (8)

where ȳ represents the average spectral value of pixels in
the spatial window centered on y and X̄ represents the new

Fig. 1. Metrics of flat-topped hexagonal grids.

dictionary formed by each pixel in the X after all pixels in
the spatial window centered on it are averaged.

Unlike the above CR models, Jiang et al. [7] merged the
spatial coordinate of pixels into objective function (7) by
designing a spatial regularization term

α∗ = arg min
a

� y − αX�2
2 + λ��a�2

2 + γ �diag(s)a�2
2 (9)

where s is associated with training samples, which encourages
representation coefficients that are spatially coherent with
respect to the training sample, and diag(s) returns a diagonal
matrix with the elements of vector s on the main diagonal.

B. HSI Oversegmentation
Oversegmentation technology has been widely used in the

HSI classification due to its powerful spatial neighborhood
definition ability, such as simple linear iterative clustering
(SLIC) [10], entropy rate superpixel (ERS) [11], and gradient
ascent-based SLIC (GA-SLIC) [12]. For the later, superpixels
associate with clusters in the defined spectral–spatial space.
Meanwhile, to improve the homogeneity of each cluster,
regular hexagonal grids are employed to generate the ini-
tial clusters, instead of the square grids used in the SLIC.
As shown in Fig. 1, the size of the hexagons can be represented
by the width w and height h, and the spacing among adjacent
hexagons can be described by the horizontal distance horiz
and the vertical distance vert. The face centers of hexagons
can be defined as a simple matrix multiplication[

Cx(t)
Cy(t)

]
=

[
horiz 0
vert h

][
rowt

colt

]
(10)

where [rowt , colt ]T refers to the row and column indexes of
the t th superpixel, and vectors a = [horizt , vertt ]T and b =
[0t, ht ]T consist of the hexagonal coordinates, for which the
origin is at the upper left of the image. Note that more details
of the GA-SLIC can be found in [12].

III. PROPOSED APPROACH

A. Motivation

Existing CR models either expand adjacent pixels to intro-
duce a spatial feature or obtain spatial information by aver-
aging the spectral features of neighboring pixels. However,
these models often show low classification accuracy and
many salt–pepper noises in the final results. Inspired by this,
we merged spatial information into the objective function by
adding a regular term induced by the superpixel cluster (see
Fig. 2) to improve the performance of the CR model.
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Fig. 2. Illustration of GA-SLIC-based segmentation image on the Indian
Pines image. (a) Superpixel block. (b) Corresponding cluster. (c) Local view.

B. Contribution

For the proposed SPaCR method, the main innovative
contributions can be summarized as follows.

1) We introduce spectral–spatial information of superpixel
clusters in the pixel-level CR paradigm and incorpo-
rate that into objective function by designing a spatial
feature-induced regularization term for the first time.

2) In comparing classic and advanced classifiers, it is found
that the SPaCR classifier on the limited labeled data can
achieve outstanding accuracy without any preprocessing
and postprocessing.

In the following, we will describe the proposed SPaCR
method for HSI classification in detail.

C. SPaCR

In this section, the three key steps of the proposed SPaCR
method1 are clearly presented as follows.

1) Oversegmentation-Based Pixel Clustering: In our model,
assume that Is refers to the segmentation details corresponding
to Sn superpixel blocks, and C = [C1, C2, . . . , C sn ] is the
cluster center of all of superpixel. D ∈ R

m as an input can be
first fed into the GA-SLIC algorithm to generate superpixel
blocks with hexagon and cluster pixels, which can be simply
represented as follows:

(Is, C) = GA-SLIC(D, Sw, ωs) (11)

where Sw is the average width of superpixels and ωs is tradeoff
coefficient between spatial and spectral information that be
employed to update cluster. Then, the cluster center of the t th
superpixel is detailedly expressed as follows:

C t = [
r t

1, r t
2, . . . , r t

m, Cx (t), Cy(t)
]T ∈ Rm+2 (12)

where r̄ t = [r t
1, r t

2, . . . , r t
m]T is the mean spectral reflectance

of the t th superpixel, and [Cx(t), Cy(t)] refers to the spatial
coordinates of the tth cluster pixel.

2) Superpixel-Based Spectral–Spatial Distance: Suppose
that xt

i is a training sample located in the tth superpixel
from the i th class, and yk is a test sample belonging to
the kth superpixel. The superpixel spectral–spatial distance d i
between xt

i and yk can be defined as follows:

dSAM
i(t, k) = arccos

(
r̄(xt

i )
T r̄(yk)∥∥r̄(xt

i)
∥∥

2

∥∥r̄(yk)
∥∥

2

)
(13)

dEd
i(t, k) =

√
{Cx(t) − Cx(k)}2 + {Cy(t) − Cy(k)}2 (14)

1MATLAB demo is available online at github.com/chengle-zhou.

Fig. 3. False-color composites and corresponding reference data for different
datasets. (a) and (b) Indian Pines image. (c) and (d) University of Pavia image.

d i =
√

norm
(
dSAM

i (t, k)2) + norm
(
dEd

i (t, k)2)
(15)

where r̄(·) represents the mean spectral feature of superpixel,
norm(·) is denoted as the L2-norm normalization operation,
and Cx(·) (Cy(·)) refers to the row (column) coordinate of the
cluster pixel of the corresponding superpixel. dSAM

i (t, k) and
dEd

i (t, k) are spectral and spatial distances between training
sample (located in the t th superpixel) and test pixel (located
in kth superpixel), respectively.

3) Superpixel-Based Spatial Peak Regularization: Once
obtaining the d = [d1, d2, . . . , dc], superpixel cluster infor-
mation as a regularization can be directly incorporated into
objective function

α∗ = arg min
a

�y − Xα�2
2 + λ��a�2

2 + β��(d)α�2
2 (16)

where λ and β are adjustable free parameters that control the
contributions of the locality prior (second term) and cluster
prior (third term), respectively. The role of �(d) in (16) is
similar to that of �, in which the closer the test sample is to
the training sample, the smaller the di , and vice versa. Finally,
the optimization process of (16) is analogous to (7), which is
derived analytically as follows:

α∗ = (
xT X + λ� + β�(d)

)
xT y. (17)

IV. EXPERIMENTAL RESULTS

A. Experimental Setup
To test the classification performance of the proposed

SPaCR method, several experiments are performed on two
real HSI datasets: Indian Pines and the University of Pavia.
The first dataset is composed of 220 spectral bands across
the spectral range of 0.4–2.5 μm, and each band contains
145 × 145 pixels with a spatial resolution of 20 m/pixel.
In our experiments, 20 water absorption bands (nos. 140–108,
150–163, and 220) of these data were removed. The sec-
ond dataset is of size 610 × 340 × 120 with a spatial
resolution of 1.3 m/pixel and a spectral coverage in the
range 0.43–0.86 μm; 12 spectral bands were removed before
the classification due to high noise. Fig. 3(a)–(d) shows the
false-color composites and their corresponding reference data
for different datasets. It is worth noting that, for the two
datasets, the number of training samples trained by all classi-
fiers in this letter, respectively, accounts for 1.0% and 0.42%
of the labeled data. Furthermore, three objective metrics,
i.e., overall accuracy (OA), average accuracy (AA), and the
Kappa coefficient, are employed in our follow-up experiments
to judge classification advantage between competitive methods
and the SPaCR method.
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Fig. 4. Analysis of the influence of the parameters Sw and Ws on the
classification performance of the SPaCR for the different scenes. (a) Indian
Pines dataset. (b) University of Pavia dataset.

Fig. 5. Influence of the regularization parameters on classification accuracies
with various values of λ and β. (a) Indian Pines dataset. (b) University of
Pavia dataset.

B. Parameter Settings
In this section, the influence of the crucial parameters on

the proposed method is analyzed in the above two real scenes.
These parameters are the average width of superpixel Sw ,
tradeoff coefficient ωs between spatial and spectral distance,
and the regularization parameters λ and β.

In the first experiment, we analyze the impact of the parame-
ters Sw and ωs on the classification performance of the SPaCR
method. As shown in Fig. 4, it can be significantly observed
that OAs first rises and then falls as the variousness of Sw when
ωs is fixed. This means that the size of the superpixel will
directly affect the determination of the cluster center and, thus,
the accuracy of the SPaCR. When Sw is fixed, the fluctuation
trend of OA does not change significantly with ωs . The reason
is that the cluster position mainly depends on the superpixel
size, and the spectral–spatial distance between the pixels in
the superpixel is just to make its position more accurate.
Furthermore, we conduct the second experiment to dissect
the influence of λ and β on the performance of the SPaCR
method. The range of λ and β is set to 0.1–0.9, respectively.
In Fig. 5, it can be seen that OAs showed a steady upward
trend as β gradually increased in the interval of 0.1–0.9 when
λ is taken a fixed value. It is demonstrated that the CR-based
classifier can be effectively improved with the introduction of
superpixel-based spatial peak regularization terms in terms of
classification accuracy (especially when it occupies a large
proportion). Finally, according to the experimental results
on real HSI datasets, the optimal parameters on the SPaCR
method are presented in Table I. In addition, we suggest that
the expansion of the SPaCR to new datasets requires the proper
adjustment of the abovementioned important parameters.

C. Spatial Advantages of Superpixel Cluster
Here, spatial advantages of superpixel cluster with respect to

pixel in terms of the measure of spatial coherence are analyzed
on the abovementioned datasets. Training samples in the two
datasets trained by the SaCR and SPaCR methods are account

TABLE I

PARAMETER SETTINGS OF THE PROPOSED SPACR METHOD
FOR THE TWO HSI DATASETS

TABLE II

CLASSIFICATION ACCURACIES (IN %) OF THE SACR AND SPACR
METHODS ON THE INDIAN PINES AND UNIVERSITY

OF PAVIA DATASETS

Fig. 6. Reference data and classification results (%) for the Indian Pines
dataset. (a) Reference data. (b)–(h) Classification maps generated by different
methods: SVM, ELM, SRC, CRC, JSaCR, SaCRT, and SPaCR.

for 1.0% and 0.42% of labeled data, respectively. We empha-
size that the SaCR just considers the spatial correlation of
pixel coordinate in the second regularization term of CR model
[see (9)]; the SPaCR exploits both spectral–spatial distance
among clusters and the cluster coordinate feature in terms of
spatial correlation [see (13)–(16)]. In Table II, it can be seen
that the SPaCR significantly outperforms the SaCR method
in terms of OA, AA, and Kappa. The reason is that: 1) the
cluster coordinate contains a more accurate spatial correlation
with respect to pixel coordinate and 2) the spectral–spatial
distance can weaken the deviation of coordinate information.

D. Comparisons With Other Classifiers
In this section, the proposed SPaCR method is compared

with the several well-known classifiers, i.e., the support
vector machine (SVM) [13], the extreme learning machine
(ELM) [14], the sparse representation classifier (SRC) [15],
and CRC [3], and two state-of-the-art classifiers, i.e.,
joint-SaCR (JSaCR) [7] and SaCRT [8] on the abovemen-
tioned public HSI datasets. The comparison results are given
in Figs. 6 and 7 and Table III, which can be clearly found
following interesting phenomena as follows.

1) In Fig. 6, the classification result map obtained by the
SPaCR has significantly less salt–pepper noise, which is
closer to the reference data [see Fig. 3(b)].

2) In Table III, the SPaCR not only achieved the highest
results in the three objective metrics but also obtained
the best classification accuracies in most classes. It is
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TABLE III

CLASSIFICATION ACCURACY (IN PERCENT) OF THE INDIAN PINES DATASET IN THE SVM, ELM, SRC, CRC, JSACR, SACRT, AND SPACR METHODS.
THE NUMBER IN THE PARENTHESIS IS THE STANDARD VARIATION OF THE ACCURACIES OBTAINED IN REPEATED EXPERIMENTS

Fig. 7. Classification performance of the proposed SPaCR method with
different numbers of training samples on various images. (a) Indian Pines
image. (b) University of Pavia image.

worth noting that the highest accuracy of the Grass-T
and Stone classes is obtained by the JSaCR and ELM
methods, respectively. The reason is that the former
employs a mean filter preprocessing operation before
classification, and the latter belongs to a single-layer
neural network, which is more sensitive to the spectral
properties of the Stone class than the CR model.

3) In Fig. 7, the SPaCR method can still maintain absolute
classification advantages as the number of training sam-
ples increases on the two HSI datasets.

In summary, this means that it is effective to introduce the
spatial peak regularization term into the CR model, and it also
proves the practicability of the SPaCR for HSI classification.

V. CONCLUSION

In this letter, a novel SPaCR method has been introduced for
HSI classification, which incorporates spectral–spatial infor-
mation among superpixel clusters into regularization terms to
construct a new CR-based closed-form solution. Specifically,
the difference information (i.e., spectrum and coordinate)
between clusters corresponding to training and test pixels as a
spectral–spatial feature-induced regularization term is directly
merged into the objective function. Experiments on several
benchmark HSI datasets indicated that the SPaCR, without any
preprocessing and postprocessing, outperforms well-known
and state-of-the-art classifiers on the limited labeled samples.
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