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Abstract— This letter introduces a novel spatial–spectral
classification method for hyperspectral images (HSIs) based on
a structural-kernel collaborative representation (SKCR), which
considers one weak assumption of spatial neighborhood that
of the pixels in a superpixel belong to the same class when
exploiting contextual information in HSI. The proposed method
consists of the following steps. First, a superpixel segmentation
strategy is used to construct self-adaptive regions for the HSI.
Then, the structural information within each superpixel block is
extracted based on the density peak and K nearest neighbors.
Next, dual kernels are separately utilized for the exploitation of
the spectral and the spatial information. Finally, the dual kernels
are combined and incorporated into a support-vector-machine
classifier. Since the weak assumption of spatial neighborhood is
well considered in the collaborative representation, the proposed
method showed excellent classification performance for two
widely used real hyperspectral data sets even when the number
of training samples was relatively small.

Index Terms— Density peak (DP), dual kernel, hyperspectral
image (HSI), spectral–spatial classification, superpixel, support
vector machines (SVMs).

I. INTRODUCTION

OVER the past several decades, there has been consid-
erable interest in hyperspectral imaging in the remote

sensing community, due to the capability of this technology
to achieve more detailed spectral characteristics than 3-D
pictorial data. Hyperspectral imagery (HSI) has been widely
used in many applications, such as classification [1]–[3],
anomaly detection, and others.

In recent years, HSI classification has become a hot topic
in research into remote sensing. Researchers have designed
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extremely interesting solutions to the problem of the separa-
bility of high-dimensional spectral response curves [4]–[7].
In [4], a generalized composite kernel (GCK) is proposed
by utilizing the incorporation of nonlinear transformations of
spectral and contextual signatures combined with the support
vector machines (SVMs) [1] for HSI classification. The result-
ing classifier is referred to as SVM-CK and models spatial
information based on extended multiattribute profiles (EMPs).
Experiments showed that the classification performance of
SVM-CK can be significantly improved with respect to the
SVM classifier. Incorporating spatial information into the ker-
nel, Fang et al. [5] presented an approach to the effective use
of the spectral–spatial information of superpixels via multiple
kernels, termed superpixel-based classification via multiple
kernels (SC-MK). The key idea behind the SC-MK is the
construction of three separate kernels by exploiting spectral
information, mean operations within superpixel blocks, and
weight fusion among each block. In addition to the abovemen-
tioned works, Li et al. [6] introduced a kernel collaborative
representation with Tikhonov regularization (KCRT), which
aims to improve the separability of spectral information while
incorporating spatial information at neighboring locations into
kernel space. Ma et al. [7] designed a discriminative kernel
collaborative representation and a Tikhonov regularization
method (DKCRT), which can make the kernel collaborative
representation of different classes more discriminative in the
HSI classification.

Spatial information plays an important role in HSI process-
ing in such as classification and can effectively improve
the accuracy of identification and interpretation of ground
covering. However, a weak assumption is generally ignored by
traditional spatial information (fixed and self-adaptive shape)
utilization methods; this is that all the pixels in a neighbor-
hood belong to the same class. In this letter, we develop
a new spatial–spectral classification method for HSI based
on a structural-kernel collaborative representation (SKCR),
which takes full advantage of the self-adaptive spatial con-
textual information and considers the weak assumption of
spatial information. Specifically, the main innovative con-
tributions of the proposed approach can be summarized as
follows.

1) The density peak (DP) algorithm [8] is introduced into
superpixels to obtain the reliability of local spatial
information of pixels. It is found that the pixels in the
homogeneous region are not all in the same class based
on density.

2) Combining DP and K nearest neighbors (K NN) algo-
rithms can redefine the spatial structure information
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of pixels. It is found that the structural information
can improve the performance of spectral–spatial clas-
sification methods more than the traditional spatial
information.

Experiments on the Indian Pines and Washington DC HSI
public data sets are adopted to demonstrate the qualitative and
quantitative superiority of the proposed SKCR method over
several well-known kernel-based algorithms.

II. RELATED WORK

A. DP Clustering

The DP clustering algorithm is based on the assumption that
the cluster center is surrounded by low-density data points and
is farther away from another high-density data point. In fact,
each sample is analyzed in terms of its local density ρ and its
distance δ to other data points with higher local density. The
DP clustering algorithm [8] can be summarized as follows:

di j = ∥∥xi − x j

∥∥2
2 (1)

where xi and x j are the points that belong to a set S =
{xt}n

t=1, n represents the number of points, and di j is the
Euclidean distance between points xi and x j . Considering the
abovementioned definition, the kernel-based local density ρi

of data point xi can be achieved as one of the following two
methods:

ρi =
{∑

j χ(di j − dc), Cutoff kernel∑
j e−

(
di j
dc

)2

, Gaussian kernel
(2)

where dc is the cutoff distance. The Gaussian kernel has the
advantage of decreasing the negative impact of the statistical
errors. According to the literature, Gaussian kernel-based
density has proved to be successful in HSI interpretation [9].

B. Superpixel Segmentation

Superpixel segmentation algorithms, such as simple lin-
ear iterative clustering (SLIC) and entropy rate superpixel
(ERS) [10], have been widely used in HSI processing to
exploit spatial–contextual information around pixels. Assume
that Sn refers to a predefined superpixel block. The graph-
based ERS algorithm first maps the image to a graph
G = (V , E), where V is a set of vectors and E is a set of
edges. Then, a subset of edges Q is selected to segment the
graph into Sn-related local regions. R(·) (the entropy rate term
of the random walk) and B(·) (a balancing term that reduces
small superpixels) are incorporated into the objective function
to form the balanced superpixels as follows:

max
Q

{R(Q) + λB(Q)} s. t. Q ⊆ E (3)

where λ ≥ 0 is a weight that controls the contribution of the
entropy rate term and the balancing term. The problem in (3)
can be solved efficiently by a greedy algorithm. Finally, given
a common label for each superpixel, the base image I can be
described as follows:

I =
Sn⋃

si =0

�si and �si ∩ �s j = ∅, (si �= s j ) (4)

where �si and �s j represent any two various superpixels in
the base image I.

Fig. 1. Schematic of structural spatial information based on DP and K NN.

III. PROPOSED APPROACH

A. Motivation

In the traditional kernel-based HSI classification, the con-
text information (fixed or adaptive) of a pixel is important
feature information to identify its class attributes. Generally,
researchers exploit spatial information based on an assumption
that the pixels of the local region come from the same class.
However, this is an assumption with insufficient arguments.
Therefore, the motivation behind this letter is to combine DP
and K NN algorithms to fully consider and overcome the weak
assumption of local spatial information of pixels (see Fig. 1).
Meanwhile, constructing a structural kernel utilizes spatial
information more reliably.

B. SKCR Algorithm

In this letter, the structural-kernel-based collaborative rep-
resentation is introduced to extract structural spatial informa-
tion and improve the classification performance of the HSI
supervised task. Specifically, the proposed SKCR method can
effectively overcome the weak assumption of spatial informa-
tion by adopting the DP and K NN approaches, which consists
of three main steps. The details are given in the following.

1) Construction of Shape-Adaptive Regions: The principal
component analysis (PCA) is first employed on the original
HSI to obtain the first three principal components that are used
as the base image for ERS segmentation. The HSI thus can
be segmented into N nonoverlapping 2-D superpixel regions.

2) Acquisition of Structure-Based Spatial Information:
Assume that a shape-adaptive region R = {r1

i , r2
i , . . . , r K

i },
where K refers to the number of pixels within a shape-adaptive
region. The spectral angle can be calculated among different
pixels for each shape-adaptive region as follows:

di st = arccos

( 〈
ru

i , rv
i

〉∥∥ru
i

∥∥∥∥rv
i

∥∥
)

. (5)

With the aforementioned definitions in mind, the local
density ρu of data point ru

i can be calculated as follows:

ρu =
∑

u

exp

{
−

(
di st
dc

)2
}

. (6)

Next, we apply K NN to select pixels that have high density
for each superpixel block. The formula is defined by

û = arg max
u∈k0

ρu (7)

where k0 represents the range of pixels with higher density
within a superpixel block. Meanwhile, a mean operation
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is applied on the spectral pixels within each superpixel as
follows:

r̄ i = 1

Nû

Nû∑
k=1

rk
i (8)

where Nû refers to the number of pixels with a relatively high
density for each superpixel block.

3) Spectral and Structural Kernel Collaboration: In the
training stage, a training set (r1, r2, . . . , rn) is initially gen-
erated randomly from the original HSI. Then, the position
indexes for selected pixels are utilized to extract pixels
from the spectral feature image ISpec (constituted by all
the spectral pixels) and the K -means feature image IK-means

(constituted by all the K NN-based filtering superpixels). The
extracted pixels can constitute the spectral feature training
data (r1

S-T, . . . , rn
S-T) and the K -means feature training data

(r1
K-T, . . . , rn

K-T), respectively. Subsequently, the radial basis
function (RBF) can be applied to the training samples to
calculate a spectral kernel K Train

spec (ri
S-T, r j

S-T) and a superpixel
density-based structure kernel K Train

struc (ri
K-T, r j

K-T) as follows:

K Train
spec

(
ri

S-T, r j
S-T

) = exp
(
−∥∥ri

S-T − r j
S-T

∥∥2
/2θ2

)
K Train

struc

(
ri

K-T, r j
K-T) = exp

(
−∥∥ri

K-T, r j
K-T

∥∥2
/2θ2

)
(9)

where θ is half-peak width of the RBF kernel function. Here,
the default setting in the LIBSVM library [11] is used. Next,
the dual kernels are combined by using a weighted strategy

K Train
coll

(
ri , r j

) = λ · K Train
spec + (1 − λ)K Train

struc (10)

where λ are the tradeoff parameters. Finally, the collaborative
kernel K Train

coll

(
ri , r j

)
can be incorporated to create a decision

rule.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

1) Data Sets: To evaluate the effectiveness of the proposed
SKCR method,1 experiments are performed on two real HSI
data set: the airborne visible/infrared imaging spectrometer
(AVIRIS) Indian Pines data and the Hyperspectral Digital
Image Collection Experiment (HYDICE) Washington DC. The
first data set consists of 220 spectral bands across the spectral
range of 0.4–2.5 μm and each band contains 145 × 145 pixels
with a spatial resolution of 20 m per pixel. In our experiments,
20 water absorption bands (nos. 140–108, 150–163, and 220)
of these data were removed. The false-color composition and
reference data of the 16 classes of the Indian Pines data set
are shown in Fig. 2(a) and (b). The second data set contains
280 scan lines and 307 pixels in each scan line. The false-color
composite and reference data (six classes) of the Washington
DC are shown in Fig. 2(c) and (d).

2) Quality Indexes: Three objective metrics, such as overall
accuracy (OA), average accuracy (AA), and the Kappa coef-
ficient, are adopted in our experiments to evaluate the quality
of classification results. The OA measures the percentage of
pixels that are correctly classified. The AA is the mean of
the percentage of correctly classified pixels for each class.
The Kappa coefficient measures the percentage of correctly

1The MATLAB codes can be available at https://github.com/chengle-zhou

Fig. 2. Indian Pines and Washington DC data sets. Indian Pines data set:
(a) three-band color composite and (b) reference data. Washington DC
data set: (c) three-band color composite and (d) reference data.

TABLE I

DIFFERENT NUMBERS OF TRAINING AND TESTING SAMPLES OF SIXTEEN

CLASSES IN THE INDIA PINES DATA SET AND SIX CLASSES

IN THE WASHINGTON DC DATA SET

Fig. 3. (a) Superpixel blocks Sn and the nearest neighbor ratio k0 for the
analysis using the Indian Pines data set. (b) Influence of the tradeoff parameter
λ on performance.

classified pixels corrected by the number of agreements that
would be expected purely by chance.

B. Parameter Settings

In this section, the influence of the parameters relevant to the
performance of the proposed SKCR method is analyzed. These
parameters are the number of superpixel blocks Sn , the nearest
neighbor ratio k0 (the ratio of nearest neighbors to the total
number of pixels in the corresponding superpixel block), and
tradeoff parameter λ. The experiments are performed on the
Indian Pines data set. As shown in Table I, the training samples
used for classification are randomly selected, as 1.5% of the
labeled data in the data set.
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Fig. 4. Performance comparison of various kernel versions on the proposed method in the Indian Pines data set with different rates of labeled data. (a) OA.
(b) AA. (c) Kappa coefficient.

In the first experiment, the impact of the superpixel blocks
Sn and the nearest neighbor ratio k0 on the performance of
the proposed method on the classification of the hyperspectral
data sets is tested. The ranges of Sn and k0 are set to 1 × 102

to 11×102 and 10%–90%, respectively. As shown in Fig. 3(a),
it can be found that the OAs of the classification results
obtained using the proposed method are strongly affected
by the changes to the parameter value. When k0 is fixed,
the spatial information of the pixels is not well extracted
for the small superpixel size. Furthermore, the classification
accuracy shows a trend of increasing first and then decreasing
with the change in parameter k0 when Sn is fixed. Therefore,
the optimal parameter settings are set to Sn = 100% and
k0 = 50% in accordance with the best classification results
produced by the proposed method.

In the second experiment, the influence of the tradeoff para-
meter λ on the performance of the proposed SKCR method is
analyzed on the Indian Pines data set. As shown in Fig. 3(b),
the classification accuracy of the SKCR is affected by λ and
shows a trend of first rising and then decreasing. The reason is
that the relative proportions of spectral and spatial information
is controlled by λ in the SKCR. Therefore, λ = 0.07 is used
as the default parameter setting for the SKCR.

C. More Analysis on Kernel Versions

To demonstrate the effectiveness of the proposed method,
we further analyzed the effect of three kernel versions,
i.e., spectral, spatial, and structural kernel, on classification
performance with the different rates of training samples on
the Indian Pines data set. The rate, referring to the randomly
selected training samples that account for a given percentage
of ground truth, is selected from the interval of {0.5%,
1.0%, . . . , 3.0%}. As shown in Fig. 4, it can be observed
that the structural-kernel-based SKCR method always achieves
better classification results in terms of OAs, AAs, and Kappa.
The reason is that: 1) for the spectral kernel, due to the small
spatial resolution of the HSI data set, the differences among the
classes are not significant; 2) for the spatial kernel, although
the introduction of context information enhances variability,
not all pixels in a neighborhood come from the same class
(the existing spatial weak assumption); and 3) for the structural
kernel, the advantage is that the spatial information of the pixel
neighborhood is extracted according to local density and K NN
to overcome the spatial weak assumption in 2).

Fig. 5. Reference data and classification results (%) for the Indian Pines
data set. (a) Reference data. (b)–(j) Classification maps generated by dif-
ferent methods: ELM (OA = 61.71%), SVM (OA = 66.23%), SVM-CK
(OA = 68.91%), MLR-GCK (OA = 67.38%), JSRC (OA = 80.84%),
SC-MK (OA = 87.74%), GFDN (89.77%), PCA-EPF (90.50%), and SKCR
(OA = 93.33%).

D. Comparisons With Other Approaches

In this section, the proposed method is compared with
the extreme learning machine (ELM) [12] method, SVM
method [1], GCK (SVM-CK and multiple logistic regression
(MLR)-GCK) [4] methods, the joint sparse representation
classification (JSRC) method [13], the SC-MK method [5],
Gabor filtering-based deep network (GFDN) [14], PCA based
edge-preserving features (PCA-EPF) [15], and the proposed
SKCR method. The SVM is implemented by applying the
Gaussian kernel with fivefold cross validation. The other
methods are implemented using the default parameters given
by the authors.

This experiment is conducted on the Indian Pines data set
using 1.5% of the labeled data as the training set (see Table I).
The classification results is represented in Table II and Fig. 5.
It can be observed from Table II that, for the proposed SKCR
method, the classification results of all classes are above 85%,
and the reports of nine classes achieve the highest accuracy
with respect to other competitive methods. In addition to
Table II, the classification results of the SKCR are more similar
to the reference data compared with competitive methods
(see Fig. 5). Specifically, it shows that the SKCR has a
significant advantage in classification accuracy. Furthermore,
we perform another experiment on a complex urban data
set (Washington DC) to investigate the generalization of the
proposed SKCR method. In the experiment, labeled data
from 5 to 11 samples of each class is randomly selected as
training samples. As shown in Fig. 6, it can be seen that the
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TABLE II

CLASSIFICATION ACCURACY (IN PERCENT) OF THE INDIAN PINES IMAGE IN THE ELM, SVM, SVM-CK, MLR-GCK, JSRC, SC-MK, GFDN,
PCA-EPF, AND SKCR METHODS. THE NUMBER IN THE PARENTHESIS IS THE STANDARD VARIATION

OF THE ACCURACIES OBTAINED IN THE REPEATED EXPERIMENTS

Fig. 6. Classification results for the Washington DC data set with a varying
number of training samples by sparse representation classifier (SRC), ELM,
SVM, SVM-CK, MLR-GCK, EPF, JSRC, SC-MK, and SKCR. (a) OA.
(b) AA.

proposed SKCR method always obtains the best classification
performance in terms of the highest OA and AA. These
experimental results further verify the validity of the proposed
SKCR method in hyperspectral classification.

V. CONCLUSION

In this letter, a new algorithm is proposed for HSI classi-
fication based on an SKCR. The basic idea behind this letter
is that the proposed SKCR method takes full advantage of
context information while considering the weak assumption
of the spatial neighborhood. Exploiting DPs and K NN to
extract the structural information of the neighborhood is the
key contribution of the work described in this letter. The
experimental results demonstrate that the SKCR produces
excellent classification performance, exceeding that of tradi-
tional kernel-based classification approaches. In future work,
we will explore the use of multipattern kernels to further
improve the classification accuracy.
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