王超教授主页
王超
172

个人信息Personal Information

教授 博士生导师 硕士生导师

教师英文名称:Chao Wang

教师拼音名称:Wang Chao

所在单位:大气科学学院

办公地点:气象楼315

性别:男

职称:教授

博士生导师

硕士生导师

  • 基本信息
  • 个人简介
  • 近期主要论著
  • 近期科研项目
  • 姓       名:  王超

    职       称:  教授

    导       师:吴立广

    最高学历:  博士

    所属专业:  大气科学

    所属系部:  天气学系

    研究方向:  热带气旋(台风),气候变化

    办公地点:  气象楼315

    邮       箱:  wangchao@nuist.edu.cn

    主讲课程:  天气学原理和方法,天气学分析基础,典型天气过程分析

    主要研究领域:  主要从事气候变化及内部变率影响热带气旋活动机理及预测方法研究

  • 教育背景:  

    2005.9-2009.6 南京信息工程大学大气科学学院    本科  大气科学专业 
    2009.9-2012.6 南京信息工程大学大气科学学院    硕士  气象学专业  
    2012.9-2016.6 南京信息工程大学大气科学学院    博士  气象学专业

    工作经历:  

    2023.9-至今,    南京信息工程大学 博士生导师
    2023.7-至今,    南京信息工程大学 教授
    2021.7-2023.6, 南京信息工程大学 副教授
    2016.6-2021.6, 南京信息工程大学 讲师
    2017.7-2018.8, 美国夏威夷大学 访问学者

    学术兼职:  

    Nature, Nature Communications, Geophysical Research Letters, Journal of Climate, Climate Dynamics多个国内外刊物审稿人

    荣誉获奖:  

    JMSJ Award ,Journal of the Meteorological Society of Japan, 2013
    JMR Reviwer Award, Journal of Meteorological Research, 2019
    JMR Reviwer Award, Journal of Meteorological Research, 2020

  • 2025

    [44]Cao, J., Feng, J., Zhao, H. et al. Comparable impacts of IPO and AMO on the decadal change of northern hemisphere tropical cyclone frequency. Clim Dyn 63, 23 (2025). https://doi.org/10.1007/s00382-024-07523-5


    2024

    [43]Wang, P., C. Wang, L. Wu, J. Cao, and H. Zhao, 2024: A Dynamical Downscaling Framework for Tropical Cyclone Activity Over the Western North Pacific. Journal of Geophysical Research: Atmospheres, 129, e2024JD041946, https://doi.org/10.1029/2024JD041946.

    [42]Gou, Y., C. Wang, Y. Wu, and L. Wu, 2024: Emergent Constraint on Projection of the North Pacific Monsoon Trough and Its Implications for Typhoon Activity Using CMIP6 Models. Journal of Geophysical Research: Atmospheres, 129, e2023JD040471, https://doi.org/10.1029/2023JD040471.

    [41]Zhang, R., C. Wang, B. Wang, Z. Guan, L. Wu, and J. Luo, 2024: Decadal Prediction of Location of Tropical Cyclone Maximum Intensity Over the Western North Pacific. Geophysical Research Letters, 51, e2023GL106746, https://doi.org/10.1029/2023GL106746.

    [40]Wang, Y., Wang, C., Wu, L. et al. Synergic influence of lower and upper troposphere large-scale circulations on tropical cyclone genesis over the western North Pacific. Clim Dyn 62, 8403–8415 (2024). https://doi.org/10.1007/s00382-024-07326-8

    [39]Zhou, C., L. Wu, C. Wang, and J. Cao, 2024: Shifted relationship between the Pacific decadal oscillation and western North Pacific tropical cyclogenesis since the 1990s. Environ. Res. Lett., 19, 014071, https://doi.org/10.1088/1748-9326/ad1640.


    2023

    [38]Wang, C., Y. Wang, B. Wang, L. Wu, H. Zhao, and J. Cao, 2023: Opposite Skills of ENGPI and DGPI in Depicting Decadal Variability of Tropical Cyclone Genesis over the Western North Pacific. J. Climate, 36, 8713–8721, https://doi.org/10.1175/JCLI-D-23-0201.1

    [37]Feng, X., L. Wu, and C. Wang, 2023: Intermodel Biases of the Western North Pacific Monsoon Trough in CMIP6 Models. J. Climate, 36, 5281–5292, https://doi.org/10.1175/JCLI-D-22-0395.1.

    [36]Gao, J., H. Zhao, P. J. Klotzbach, F. Sun, G. B. Raga, C. Wang, and Z. Ma, 2023: Environmental characteristics of western North Pacific tropical cyclone onset in neutral ENSO years. Clim Dyn, 61, 413–429, https://doi.org/10.1007/s00382-022-06559-9.


    [35]Zang, Y., H. Zhao, P. J. Klotzbach, C. Wang, and J. Cao, 2023: Relationship between the South Asian High and Western North Pacific tropical cyclone genesis. Atmospheric Research, 281, 106491.


    [34]Yulong Yao, Chunzai Wang, Chao Wang,Record-breaking 2020 summer marine heatwaves in the western North Pacific,Deep Sea        Research Part II: Topical Studies in Oceanography,Volume 209,2023,105288,ISSN 0967-0645, https://doi.org/10.1016/j.dsr2.2023.105288.

    [33] Wang, C., M. Fu, B. Wang, L. Wu, and J. Luo, 2023: Pacific Decadal Oscillation Modulates the Relationship Between Pacific Meridional Mode and Tropical Cyclone Genesis in the Western North Pacific. Geophys. Res. Lett., 50, https://doi.org/10.1029/2022GL101710


    [32] Fu, M., C. Wang*, L. Wu, and H. Zhao, 2023: Season‐Dependent Modulation of Pacific Meridional Mode on Tropical Cyclone Genesis Over the Western North Pacific. J. Geophys. Res. Atmos., 128, https://doi.org/10.1029/2022JD037575


    2022

    [31] Wang, C.,B. Wang, L. Wu, and J.-J. Luo, 2022: A Seesaw Variability in Tropical Cyclone Genesis between the Western North Pacific and the North Atlantic Shaped by Atlantic Multidecadal Variability. J. Clim., 35, 2479–2489, https://doi.org/10.1175/JCLI-D-21-0529.1


    [30] Wu, K.#, C. Wang*, L. Wu, H. Zhao, and J. Cao, 2022: Slowdown in Landfalling Tropical Cyclone Motion in South China. Geophys. Res. Lett., 49, e2022GL100428, https://doi.org/10.1029/2022GL100428. https://onlinelibrary.wiley.com/doi/full/10.1029/2022GL100428


    [29]Cao, J., H. Wang, B. Wang, H. Zhao, C. Wang, and X. Zhu, 2022: Higher Sensitivity of Northern Hemisphere Monsoon to Anthropogenic Aerosol Than Greenhouse Gases. Geophysical Research Letters, 49, e2022GL100270, https://doi.org/10.1029/2022GL100270.


    [28]Cao, J., H. Wang, H. Zhao, B. Wang, L. Wu, and C. Wang, 2022: Reversed and comparable climate impacts from historical anthropogenic aerosol and GHG on global-scale tropical cyclone genesis potential. Environmental Research Letters, 17, 094027.


    [27]Wu, X., Q. Zhu, C. Wang, Y. Zhou, Y. Chen, X. Tian, and Y. Hua, 2022: Contribution of Winter SSTA in the Tropical Eastern Pacific to Changes of Tropical Cyclone Precipitation over Southeast China. J Meteorol Res, 36, 282–291, https://doi.org/10.1007/s13351-022-1100-z.


    [26]Cai, Y., X. Han, H. Zhao, P. J. Klotzbach, L. Wu, G. B. Raga, and C. Wang, 2022: Enhanced predictability of rapidly intensifying tropical cyclones over the western North Pacific associated with snow depth changes over the Tibetan Plateau. Journal of Climate, 35, 2093–2110.


    [25] Wu, L., H. Zhao, C. Wang, J. Cao, and J. Liang, 2022: Understanding of the Effect of Climate Change on Tropical Cyclone Intensity: A Review. Adv. Atmos. Sci., 39, 205–221,  https://doi.org/10.1007/s00376-021-1026-x


    2021


    [24] Wang, C., and B. Wang, 2021: Impacts of the South Asian high on tropical cyclone genesis in the South China Sea. Clim. Dyn., 56, 2279–2288, https://doi.org/10.1007/s00382-020-05586-8


    [23] Wang, C., K. Wu, L. Wu, H. Zhao, and J. Cao, 2021: What Caused the Unprecedented Absence of Western North Pacific Tropical Cyclones in July 2020? Geophys. Res. Lett., 48, 1–9, https://doi.org/10.1029/2020GL092282  (Highlighted by Nature https://www.nature.com/articles/d41586-021-01145-1)


    [22] Wang, C., L. Wu, H. Zhao, Q. Liu, and J. Wang, 2021: An Abrupt Slowdown of Late Season Tropical Cyclone over the Western North Pacific in the Early 1980s. J. Meteorol. Soc. Japan. Ser. II, 2021–2068, https://doi.org/10.2151/jmsj.2021-068


    [21] Chen, S., H. Zhao, P. J. Klotzbach, G. B. Raga, J. Cao, and C. Wang, 2021: Decadal Modulation of Transbasin Variability on Extended Boreal Summer Tropical Cyclone Activity in the Tropical North Pacific and Atlantic Basins. J. Clim., 34, 7149–7166, https://doi.org/10.1175/JCLI-D-20-0249.1


    2020


    [20] Wang, C., L. Wu, J. Lu, Q. Liu, H. Zhao, W. Tian, and J. Cao, 2020: Interannual Variability of the Basinwide Translation Speed of Tropical Cyclones in the Western North Pacific. J. Clim., 33, 8641–8650, https://doi.org/10.1175/JCLI-D-19-0995.1


    [19] Cao, J., B. Wang, B. Wang, H. Zhao, C. Wang, and Y. Han, 2020: Sources of the Intermodel Spread in Projected Global Monsoon Hydrological Sensitivity. Geophys. Res. Lett., 47, https://doi.org/10.1029/2020GL089560


    [18] Gao, J., H. Zhao, P. J. Klotzbach, C. Wang, G. B. Raga, and S. Chen, 2020: Possible Influence of Tropical Indian Ocean Sea Surface Temperature on the Proportion of Rapidly Intensifying Western North Pacific Tropical Cyclones during the Extended Boreal Summer. J. Clim., 33, 9129–9143, https://doi.org/10.1175/jcli-d-20-0087.1


    [17] Tian, W., W. Huang, L. Yi, L. Wu, and C. Wang, 2020: A CNN-Based Hybrid Model for Tropical Cyclone Intensity Estimation in Meteorological Industry. IEEE Access, 8, 59158–59168, https://doi.org/10.1109/ACCESS.2020.2982772


    [16] Han, X., H. Zhao, X. Li, G. B. Raga, C. Wang, and Q. Li, 2020: Modulation of boreal extended summer tropical cyclogenesis over the northwest Pacific by the quasi‐biweekly oscillation under different El Niño‐southern oscillation phases. Int. J. Climatol., 40, 858–873, https://doi.org/10.1002/joc.6244


    2019


    [15] Wang, C., B. Wang, and J. Cao, 2019: Unprecedented Northern Hemisphere Tropical Cyclone Genesis in 2018 Shaped by Subtropical Warming in the North Pacific and the North Atlantic. Geophys. Res. Lett., 46, 13327–13337, https://doi.org/10.1029/2019GL085406


    [14] Wang, C., B. Wang, and L. Wu, 2019: A Region-Dependent Seasonal Forecasting Framework for Tropical Cyclone Genesis Frequency in the Western North Pacific. J. Clim., 32, 8415–8435, https://doi.org/10.1175/JCLI-D-19-0006.1


    [13] Wang, C., and B. Wang, 2019: Tropical cyclone predictability shaped by western Pacific subtropical high: integration of trans-basin sea surface temperature effects. Clim. Dyn., 53, 2697–2714, https://doi.org/10.1007/s00382-019-04651-1


    [12] Wang, C., B. Wang, and L. Wu, 2019: Abrupt breakdown of the predictability of early season typhoon frequency at the beginning of the twenty-first century. Clim. Dyn., 52, 3809–3822, https://doi.org/10.1007/s00382-018-4350-9


    [11] Wang, C., L. Wu, H. Zhao, J. Cao, and W. Tian, 2019: Is there a quiescent typhoon season over the western North Pacific following a strong El Niño event? Int. J. Climatol., 39, 61–73, https://doi.org/10.1002/joc.5782


    [10] Zhao, H., L. Wu, C. Wang, and P. J. Klotzbach, 2019: Consistent Late Onset of the Western North Pacific Tropical Cyclone Season Following major El Niño Events. J. Meteorol. Soc. Japan. Ser. II, 97, 673–688, https://doi.org/10.2151/jmsj.2019-039


    [9]Tian, W., W. Huangwei, X. Xu, and C. Wang, 2019: Tropical cyclone maximum wind estimation from infrared satellite data with integrated convolutional neural networks. 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), IEEE, 575–580 https://ieeexplore.ieee.org/abstract/document/8875334/



    2018


    [8] Wang, C., and L. Wu, 2018: Projection of North Pacific Tropical Upper-Tropospheric Trough in CMIP5 Models: Implications for Changes in Tropical Cyclone Formation Locations. J. Clim., 31, 761–774, https://doi.org/10.1175/JCLI-D-17-0292.1


    [7] Wang, C., and L. Wu, 2018: Future Changes of the Monsoon Trough: Sensitivity to Sea Surface Temperature Gradient and Implications for Tropical Cyclone Activity. Earth’s Futur., 6, 919–936, https://doi.org/10.1029/2018EF000858



    2016


    [6] Wang, C., and L. Wu, 2016: Interannual Shift of the Tropical Upper-Tropospheric Trough and Its Influence on Tropical Cyclone Formation over the Western North Pacific. J. Clim., 29, 4203–4211, https://doi.org/10.1175/JCLI-D-15-0653.1


    2015


    [5] Wu, L., and C. Wang, 2015: Has the Western Pacific Subtropical High Extended Westward since the Late 1970s? J. Clim., 28, 5406–5413, https://doi.org/10.1175/JCLI-D-14-00618.1


    [4] Wang, C., and L. Wu, 2015: Influence of future tropical cyclone track changes on their basin-wide intensity over the western North Pacific: Downscaled CMIP5 projections. Adv. Atmos. Sci., 32, 613–623, https://doi.org/10.1007/s00376-014-4105-4


    [3] Wu, L., C. Wang, and B. Wang, 2015: Westward shift of western North Pacific tropical cyclogenesis. Geophys. Res. Lett., 42, 1537–1542, https://doi.org/10.1002/2015GL063450


    2012


    [2] Wang, C., and L. Wu, 2012: Tropical Cyclone Intensity Change in the Western North Pacific: Downscaling from IPCC AR4 Experiments. J. Meteorol. Soc. Japan, 90, 223–233, https://doi.org/10.2151/jmsj.2012-205


    2011


    [1] Wang, R., L. Wu, and C. Wang, 2011: Typhoon Track Changes Associated with Global Warming. J. Clim., 24, 3748–3752, https://doi.org/10.1175/JCLI-D-11-00074.1


  • 近期科研项目:  


    国家自然科学基金面上项目(42075031), 跨海盆变率对西北太平洋台风生成的影响机理研究, 2021/01-2024/12, 主持

    国家重点研发计划项目课题(2019YFC1510201), 气象灾害致灾条件时空特征及致灾机理, 2020/01-2022/12, 子课题负责人

    国家自然科学基金青年项目(41705060), 海洋次表层热力结构影响西北太平洋热带气旋强度气候变化的机理研究, 2018/01-2020/12, 主持

    江苏省自然科学基金青年项目(BK20170941), 上层海洋热力结构对台风强度气候变化的影响机理研究, 2017/07-2020/06, 主持

    南京信息工程大学人才启动经费(2016r048), 预估未来台风活动的不确定性研究, 2016/09-2019/09, 主持

    江苏省普通高校研究生科研创新计划项目(CXZZ13 0496), 气候变化对台风活动的影响分析, 2012/06-2014/05, 主持

    国家自然科学基金重点项目(41730961), 青藏高原热力强迫影响西北太平洋热带气旋活动的机理研究, 2018/01-2022/12, 骨干

    国家自然科学基金面上项目(41675072), 低频夏季风环流背景下热带西北太平洋天气尺度波列发展的机理研究, 2017/01-2020/12, 参加

    国家自然科学基金面上项目(41475091), 基于CMIP5模式西北太平洋热带气旋活动的概率预估研究,2015/01-2018/12, 参加

    ==========================================
    欢迎对台风及气候变化感兴趣的同学报考研究生。