董昌明
开通时间:..
最后更新时间:..
职称:教授,博士生导师
职务:海洋科学学院院长
国际地球流体研究中心主任
人工智能海洋联合研究院院长
南京信大海洋大数据研究院院长
南信大-舟山气象局舟山海洋大气联合示范研究基地主任
国家重点研发计划项目首席科学家
中国海洋学会人工智能海洋学专业委员会 主任委员
人才计划:基金委海外资深学者
研究方向:
物理海洋学;海洋数值模拟;人工智能海洋学;实验地球流体力学
主讲课程:
地球流体力学;人工智能海洋学;郑和下西洋中的海洋学;物理海洋学导论;海洋数值模拟;海洋绿色能源;Ocean Dynamics Seminars;实验地球流体力学;English for Academic Communications
教育背景:
1984年高中毕业于安徽省屯溪一中。1989、1992、1997,2000,2002年先后获得中国科技大学学士、国家海洋局一所硕士、中科院海洋所博士、美国哥伦比亚大学硕士和博士学位。2002-2004先后在美国普林斯顿大学和加州大学洛杉矶分校从事博士后工作。
工作经历:
2004年之后加州大学洛杉矶分校和加州埃尔卡密诺学院从事科研和教学工作。
2013年12月受聘于南京信息工程大学海洋科学学院,组建了“海洋数值模拟和观测”实验室。
学术成果:
董教授先后主持科技部、国家基金委、美国自然科学基金(NSF)、美国航天航空局(NASA)、 美国海上能源局(BOEM)等机构资助的科研项目,发表了一系列具有创新性和开拓性的SCI论文,指导多名硕士、博士研究生和博士后。承担若干国际大型石油公司的海上环境评估的长年咨询业务。发表论文160余篇、专著四部。董教授也积极参与和组织国际科学领域的学术活动,例如,2016和2018年在南京信息工程大学先后举办两届有200多人参加的“国际区域海洋模拟与观测研讨会”;多次在世界最大的海洋年会“Ocean Science Meeting”主持专题会议;参与亚洲及大洋洲地球协会(AOGS)的组织管理工作,2017年夏天在新加坡被选为AOGS海洋分部主席;董教授还担任国际著名SCI杂志“Deep-Sea Research”编委、Ocean Modeling编委等。
董教授负责的“海洋数值模拟与观测实验室”现有成员中80%以上具有博士学位,60%的成员具有海外经历。实验室采取开放式、现代国际远程合作的工作模式,并与国内涉海兄弟院校和海洋科研单位,以及欧洲、美国、加拿大、澳大利亚、日本、韩国、台湾、香港等国家和地区的海洋科研研究机构建立了长期和实质性的科研交流与合作关系。实验室现正积极吸纳国际国内从事前沿性研究的研究人员,开拓海洋研究领域,培养具有国际竞争力的海洋学家。欢迎有志于海洋事业的年轻学子加入。
“海洋数值模拟与观测实验室”将以南京信息工程大学海洋科学学院为依托,在国内与国家海洋局第一海洋研究所、国家海洋局第二海洋研究所、中国海洋大学、中国科学院南海海洋研究所等多家兄弟单位建立实质性的科研交流与合作关系。
实验室将整合数值模拟、海洋观测与分析、卫星遥感等科研力量,建立健全的高水平数值模拟队伍,打造我国特有的高质量数值模拟产品。借助观测数据的验证与同化对模拟产品进行进一步的优化,最终将其推广应用于江苏省沿岸乃至全中国海的物理海洋研究中,揭示这些海域中尺度海气相互作用机制,最终实现预报、预警等目的。
为响应国家和江苏省对于海洋建设的需求号召,也为建设“海洋强省”做出贡献,南京信息工程大学海洋科学学院在克服地理位置局限(南京离东海最近距离 300 多公里),科学观测匮乏(海洋以观测为基础,中国海洋大学、厦门大学、浙江大学等都拥有自主科考船)等诸多困难下,另辟蹊径,在以董昌明教授为主的领导下,目前正在建设世界最大规模的地球流体旋转实验平台。该实验室定位为结合国际现有先进水平科学研究平台,以海气相互作用、海洋动力学、海洋数值模拟和地球流体力学为主要内容,开展以旋转水池平台为手段,仿真模拟各种海洋状况的基础研究、应用基础研究及产业化研究。该实验平台建成后,将极大地带动学校海洋学科发展,期待为地球流体力学研究做出贡献。
社会兼职:
在洛杉矶工作期间,董昌明积极参与社区活动。2007年创办了华人教育协会和中文学校,积极推广中华文化和汉语教学,并且热情参与美国青少年足球运动,组建少儿足球队,同时从2009年起长年业余担任美国青少年足球协会(AYSO)的教练和裁判工作、并且获得美国青少年足球协会颁发的裁判和教练资格证。
荣誉获奖:
2022年度,优秀研究生导师
2022年度,带领的”海洋数值模式与观测实验室“ 获得“师德先进集体”荣誉称号
2019年度,国际化工作先进个人
2018年度,优秀留学人员
2016年度,国家海洋技术奖,二等奖
2016年度,国际海洋优秀图书奖
2016年度,江苏省海洋与渔业科技创新奖,一等奖
近期主要论著:
已出版专著:
[1] 董昌明、韩莹、徐广珺、张琪、谢文鸿、周书逸. 人工智能海洋学基础及应用[M]. 科学出版社, 2022.
[2] 董昌明、王锦、李春辉、孙文金、单海霞、陆青. 海洋数值模拟[M]. 科学出版社, 2021.
[3] 董昌明、禹凯、刘宇、王锦、董济海. 物理海洋学导论[M]. 科学出版社, 2019.
[4] 董昌明. 郑和下西洋中的海洋学[M]. 科学出版社, 2018.
[5] 董昌明. 海洋绿色能源[M]. 科学出版社, 2016.
[6] 董昌明. 海洋涡旋探测与分析[M]. 科学出版社, 2015.
已发表论文:
191 | Xu, G., Xie, W., Lin, X., Liu, Y., Hang, R., Sun, W., ... & Dong, C.* (2024). Detection of Three-dimensional Structures of Oceanic Eddies Using Artificial Intelligence. Ocean Modelling, 102385.https://doi.org/10.1016/j.ocemod.2024.102385. |
190 | Ma, S., Dong, J.*, Dong, C., & Jing, Z. (2024). Effects of symmetric instability on potential vorticity budget in the Kuroshio Extension region via a parameterization scheme. Journal of Geophysical Research: Oceans, 129(8), e2023JC020375. https://doi.org/10.1029/2023JC020375 |
189 | Gao, X.,Han, G., Sun, W., Zhou, S., Xie, W., Cen, H., ... & Dong, C.* (2024). Application of deep learning in estimating the convective mixing induced by brine rejection. Ocean Modelling, 102314.https://doi.org/10.1016/j.ocemod.2024.102314. |
188 | Feng, Q.,Han, G.*, Liu, Y., Lin, X., Li, B., Gao, X., Dong, C., He, Y., Wang, H. (2024). Application of data-driven mixing parameterization scheme in a regional ocean model. Ocean Modelling, 102325.https://doi.org/10.1016/j.ocemod.2024.102325. |
187 | Dong, C.*, Lu, X., Liu, Y.,Han, G., Fu, M., Cao, Q., Zhang, Y., Chen, X., Yuan, Y. (2024). Rotating Tank Experiments for the Study of Geophysical Fluid Dynamics. Journal of Oceanology and Limnology, 1-14.https://doi.org/10.1007/s00343-024-3221-y. |
186 | Jin Y..Jin M.*,Dong C., et al. (2024). The lifespan mechanism of dipole eddies to the east of Vietnam and their intrinsic connections. Journal of Oceanology and Limnology. https://doi.org/10.1007/s00343-024-4020-1. |
185 | Jin Y.,Jin M.*, Wang D., Dong C., (2024). Statistical analysis of multi-year South China Sea eddies and exploration of eddy classification. Remote Sensing. 2024, 16, 1818. https://doi.org/10.3390/. |
184 | Wang J., Brandon, J., Xie W.,Dong C*,.(2024).A hybrid model for significant wave height prediction based on an improved empirical wavelet transform decomposition and long-short term memory network,Ocean Modelling,https://doi.org/10.1016/j.ocemod.2024.102367 |
183 | Fu M.,Han G.,Lu X.,Sun W., Sommeria J., Stegner A., Rui M.A. Caldeira , Dong C.*, (2024). Analysis of vortex merging from a rotating tank laboratory experiment [J]. Progress in Oceanography., 222: 103227. |
182 | Lu X, Dong C*, Zhang H, Lim Kam Sian K, Yang J, Xu Z, Li G, Wang Q, Cao Q, You Z, Sommeria J. (2024). Observational analysis of vertical heat flux caused by typhoon-induced near-inertial waves under the modulation of mesoscale eddies[J]. Journal of Geophysical Research: Oceans, doi: 10.1029/2024JC021053 |
181 | 林连杰,董昌明,*嵇宇翔, LIM KAM SIAN Kenny Thiam Choy, 李兆鑫, 蒋星亮, 曹玉晗, 高慧, 王胜强, 曹茜. (2024)基于遥感数据与数值模式的浒苔漂移输运预报:以江苏近海为例[J]. 海洋学研究, 2024, 42(1): 69-82. |
180 | Yang, G., Li, C., Zhong, Y.*, Pan, X., Zhao, C., & Dong, C*. (2024). Impact of tropical cyclones on the hydrodynamics and sediment dynamics of the radial sand ridge system in the southern Yellow Sea. Ocean Modelling, 102328. |
179 | Sun, W., Yang, Y., Wang, Y., Yang, J., Ji, J., and Dong, C*. (2024). Characterization and future projection of marine heatwaves under climate change in the South China Sea. Ocean Model. 188, 102322. doi: 10.1016/j.ocemod.102322 |
178 | Fu M, Dong C*, Dong J, Sun W. (2023). Analysis of Mesoscale Eddy Merging in the Subtropical Northwest Pacific Using Satellite Remote Sensing Data [J]. Remote Sens., 15: 4307. |
177 | Lu X, Dong C*, Xu Z, Yang J, Zhang H, Wang D, Chen D. (2023). Effects of numerical model’s horizontal resolution on the vertical transport of near-inertial energy[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 207: 105223. |
176 | Sun, W., Zhou, S., Yang, J., Gao, X., Ji, J., and Dong, C*. (2023). Artificial intelligence forecasting of marine heatwaves in the south china sea using a combined U-Net and ConvLSTM system. Remote Sens.-Basel. 15(16), 4068. doi: 10.3390/rs15164068 |
175 | 韩莹,孙凯强,闫加宁,董昌明*(2023).基于变分模态分解-长短时记忆网络-宽度学习 系统混合模型的东海海温预测.激光与光电子学进展.https://doi.org/10.3788/LOP213371 |
174 | Yu, K., Dong, C., Wang, J., Cheng, X., & Yu, Y. (2023). Statistical Characteristics of the Multiscale SST Fractal Structure over the Kuroshio Extension Region Using VIIRS Data. Remote Sensing, 15(4), 881. https://doi.org/10.3390/rs15040881 |
173 | Chen, S., Yao, Y., Feng, Y., Zhang, Y., Xia, C., Sian, K. T., & Dong, C.* (2023). Characteristics and Drivers of Marine Heatwaves in 2021 Summer in East Korea Bay, Japan/East Sea. Remote Sensing, 15(3), 713.http://doi.org/10.3390/rs15030713 |
172 | Cao, Y., Dong, C.*, Stegner, A., Bethel, B. J., Li, C., Dong, J.*, ... & Yang, J. (2023) Global Sea Surface Cyclogeostrophic Currents Derived from Satellite Altimetry Data. Journal of Geophysical Research: Oceans, e2022JC019357. |
171 | Cao, Y., Dong, C.*, Qiu, Z., Bethel, B. J., Shi, H., Lü, H., & Cheng, Y. (2022). Corrections of Mesoscale Eddies and Kuroshio Extension Surface Velocities Derived from Satellite Altimeters. Remote Sensing, 15(1), 184. |
170 | Hang, R., Li, G., Xue, M., Dong C.,Wei, J.(2022).Identifying Oceanic Eddy With An Edge-Enhanced Multiscale Convolutional Network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.http://doi.org/10.1109/JSTARS.2022.3215696 |
169 | Dong C.*,Xu G.,Han G.,Bethel, B. J. ,Xie W.,Zhou S.,(2022).Recent Developments in Artificial Intelligence in Oceanography. Ocean-Land-Atmosphere Research.https://doi.org/10.34133/2022/9870950 |
168 | 董昌明*,LIM KAM SIAN Kenny Thiam Choy,蒋星亮,曹玉晗,嵇宇翔,王森,余洋,陆晓婕,周书逸,韦销蔚,BETHEL Brandon Justin,徐广珺,董济海,孙文金,王海丽,单海霞,王锦,王东霞,滕芳园,曹茜,谢文鸿,游志伟,王子韵,林连杰, (2022).一个中国边缘海的风-浪-流预报系统. 海洋科学进展.https://doi.org/10.12362/j.issn.1671-6647.20220703001 |
167 | Shan, H., Dong C.* ,.Liang, J. H. (2022). Influence of sea surface wave-dependent roughness on summer precipitation over the Southeastern United States. Deep Sea Research Part II: Topical Studies in Oceanography, 105209.https://doi.org/10.1016/j.dsr2.2022.105209 |
166 | Wang, Y.,Dong, J.*,Ji, C., Dong C. ,.Dependence of submesoscale simulation on turbulence closure schemes in the Regional Ocean Modeling System (ROMS).Ocean Modelling 180 (2022) 102120.https://doi.org/10.1016/j.ocemod.2022.102120 |
165 | Sun, W., Dong C. *,(2022). Isopycnal and diapycnal mixing parameterization schemes for submesoscale processes induced by mesoscale eddies. Deep Sea Research Part II: Topical Studies in Oceanography, 202, 105139.https://doi.org/10.1016/j.dsr2.2022.105139 |
164 | Feng, Y., Bethel, B. J., Dong C.*,. Zhao, H.**, Yao, Y., Yu, Y. (2022). Marine heatwave events near Weizhou Island, Beibu Gulf in 2020 and their possible relations to coral bleaching. Science of The Total Environment, 823, 153414.http://dx.doi.org/10.1016/j.scitotenv.2022.153414 |
163 | Han, G., Cen, H., Jiang, J., Gao, X., Jiang, X., Zhou, S., Dong C.*,. (2022). Applying machine learning in devising a parsimonious ocean mixing parameterization scheme. Deep Sea Research Part II: Topical Studies in Oceanography, 203, 105163.https://doi.org/10.1016/j.dsr2.2022.105163 |
162 | Dong, J., Jing, Z., Fox-Kemper, B., Wang, Y., Cao, H., Dong C.*,. (2022). Effects of symmetric instability in the Kuroshio Extension region in winter. Deep Sea Research Part II: Topical Studies in Oceanography, 202, 105142.https://doi.org/10.1016/j.dsr2.2022.105142 |
161 | Liao, G., Hu, X., Xu, S., Wu, K., Dong, J., Dong C.*,. (2022). Impact of symmetric instability parametrization scheme on the upper ocean layer in a high-resolution global ocean model. Deep Sea Research Part II: Topical Studies in Oceanography, 202, 105147.https://doi.org/10.1016/j.dsr2.2022.105147 |
160 | Wang, Q., Pang, C.,Dong C.*,. (2022). Role of submesoscale processes in the isopycnal mixing associated with subthermocline eddies in the Philippine Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 202, 105148.https://doi.org/10.1016/j.dsr2.2022.105148 |
159 | Wang, Q., Dong C.*,. Dong, J., Zhang, H., Yang, J. (2022). Submesoscale processes-induced vertical heat transport modulated by oceanic mesoscale eddies. Deep Sea Research Part II: Topical Studies in Oceanography, 202, 105138.https://doi.org/10.1016/j.dsr2.2022.105138 |
158 | Cao, Q., Dong C.*,. Ji, Y., Jiang, X., Bethel, B. J., Xia, C., He, C. (2022). Seamount-induced mixing revealed through idealized experiments and its parameterization in an Oceanic General Circulation Model. Deep Sea Research Part II: Topical Studies in Oceanography, 202, 105144.https://doi.org/10.1016/j.dsr2.2022.105144 |
157 | Ji, J., Dong C.*,. Liu, X., Liu, T., Yu, Y., Sian, K. T. L. K., Zhao, H. (2022). Influence of oceanic mesoscale eddy on the atmospheric boundary layer based on an idealized model. Deep Sea Research Part II: Topical Studies in Oceanography, 202, 105146.https://doi.org/10.1016/j.dsr2.2022.105146 |
156 | 董昌明,董济海,廖光洪, 陈旭,徐振华,王庆业,张继才,曹茜,孙文金,王海丽 . (2022). 高分辨率海洋模式关键物理过程参数化方案的研发. 科技成果管理与研究.DOI:10.3773/j.issn.1673-6516.2022.08.005 |
155 | Wang, H., Dong C.*,. Fox-Kemper, B., Li, Q., Yang, Y., Chen, X., Sian, K. T. L. K. (2022). Parameterization of ocean surface wave-induced mixing using Large Eddy Simulations (LES) II. Deep Sea Research Part II: Topical Studies in Oceanography, 203, 105167.https://doi.org/10.1016/j.dsr2.2022.105167 |
154 | 谢文鸿,徐广珺, 董昌明..基于ConvLSTM机器学习的风暴潮漫滩预报研究. (2022).大气科学学报. doi:10.13878/j.cnki.dqkxxb.20220711001. |
153 | Wang, J., Dong, C.*,.Liu, Q. J., Zuo, Q. H. (2022). Solitary Wave Simulated by the Water Column Collapsing Method. China Ocean Engineering, 36(3), 395-402.DOI: https://doi.org/10.1007/s13344-022-0035-6 |
152 | Dong, J., Dong C.*,.Yu, K. (2022). Impacts of Climate Change on a Coastal Wetland from Model Simulation Combining Satellite and Gauge Observations: A Case Study of Jiangsu, China. Remote Sensing, 14(10), 2473.https://doi.org/10.3390/rs14102473 |
151 | Bethel, B. J., Sun, W., Dong C.,. Wang, D. (2022). Forecasting hurricane-forced significant wave heights using a long short-term memory network in the Caribbean Sea. Ocean Science, 18(2), 419-436.https://doi.org/10.5194/os-18-419-2022 |
150 | Dong C.*,Liu, L., Nencioli, F., Bethel, B. J., Liu, Y., Xu, G., Zou, B. (2022). The near-global ocean mesoscale eddy atmospheric-oceanic-biological interaction observational dataset. Scientific Data, 9(1), 1-13.https://doi.org/10.1038/s41597-022-01550-9 |
149 | Gao, H., Cai, W. J.*, Jin, M., Dong C.,Timmerman, A. H. (2022). Ocean ventilation controls the contrasting anthropogenic CO2 uptake rates between the western and eastern South Atlantic Ocean basins. Global Biogeochemical Cycles, 36(6), e2021GB007265.https://doi. org/10.1029/2021GB007265 |
148 | Jiang, X., Liu, L., Li, Z., Liu, L., Lim Kam Sian, K. T., Dong C.*,. (2022). A Two-Dimensional Variational Scheme for Merging Multiple Satellite Altimetry Data and Eddy Analysis. Remote Sensing, 14(13), 3026.https://doi.org/10.3390/rs14133026 |
147 | 杨霄, 张永垂*, 夏长水, 董昌明*, 胡楠, 汪浩笛, 陈诗尧(2022).日本海中尺度涡旋时空变化特征研究[J]. 海洋学报, 2022, 44(6): 1-16. doi: 10.12284/hyxb2022035. |
146 | Xia Q., Dong C.*, He Y.*, Li G., Dong J. (2022). Lagrangian study of several long-lived Agulhas rings. Journal of Physical Oceanography. 10.1175/JPO-D-21-0079.1 |
145 | Xia Q., Li G.*, Dong C.* (2022). Global oceanic mass transport by coherent eddies. Journal of Physical Oceanography. 10.1175/JPO-D-21-0103.1. |
144 | Li G., Dong C., Pan J., Devlin A. T., Wang D.*(2022). Influence of the upper mixed layer depth on Langmuir turbulence characteristics. Journal of Oceanology and Limnology. https://doi.org/10.1007/s00343-022-1123-4. |
143 | Wang J., Bradon J. B., Dong C.*, Li C., Cao Y. (2022). Numerical, Simulation and Observational Data Analysis of Mesoscale Eddy Effects on Surface Waves in the South China Sea. Remote Sens. 14, 1463. https://doi.org/10.3390/rs14061463. |
142 | Feng Y., Bradon J. B., Dong C.*, Zhao H.*, Yao Y, Yu Y. (2022). Marine heatwave events near Weizhou Island, Beibu Gulf in 2020 and their possible relations to coral bleaching. Science of the Total Environment, 823, 153414, http://dx.doi.org/10.1016/j.scitotenv.2022.153414. |
141 | Bradon J. B., Sun W., Dong C.*, Wang D.(2022). Forecasting hurricane-forced significant wave heights using a long short-term memory network in the Caribbean Sea. Ocean Sci., 18, 419–436, https://doi.org/10.5194/os-18-419-2022. |
140 | Bethel B.J., Dong C.*, Zhou S., Cao Y.(2021). Bidirectional Modeling of SurfaceWinds and Significant Wave Heights in the Caribbean Sea. J. Mar. Sci. Eng, 9, 547. |
139 | Bethel,B.J,Dong,C.*,and Wang,J. (2021) An Empirical Wind-Wave Model for Hurricane-Forced Wind Waves in the Caribbean Sea. Earth and Space Science,8(12),e2021EA001956. https://doi.org/10.1029/2021EA001956 |
138 | Cao Y., Dong C.*, Young I. R., Yang J.(2021). Global Wave Height Slowdown Trend during a Recent Global Warming Slowdown. Remote Sens., 13, 4096. https://doi.org/10.3390/rs13204096. |
137 | Dong J., Fox-Kemper B., Zhu J., Dong C.*. (2021). Application of symmetric instability parameterization in the Coastal and Regional Ocean Community Model (CROCO). Journal of Advances in Modeling Earth Systems, doi: 10.1029/2020MS002302. |
136 | Dong J., Fox-Kemper B., Zhang H., Dong C.*.(2021). The scale and activity of symmetric instability estimated from a global submesoscale-permitting ocean model. Journal of Physical Oceanography, doi: 10.1175/JPO-D-20-0159.1 |
135 | Dong J., Jin M.*, Liu Y., Dong C. (2021). Interannual variability of surface salinity and Ekman pumping in the Canada Basin during summertime of 2003−2017. Journal of Geophysical Research: Oceans, 126, https://doi.org/10.1029/2021JC017176. |
134 | Feng Y., Shi H., Hou G., Zhao H.*, Dong C. 2021. Relationships between environmental variables and spatial and temporal distribution of jack mackerel (Trachurus japonicus) in the Beibu Gulf, South China Sea. PeerJ 9:e12337, http://doi.org/10.7717/peerj.12337 |
133 | Gao H., Zhao H.*, Han G., Dong C.(2021). Spatio-Temporal Variations of Winter Phytoplankton Blooms Northwest of the Luzon Island in the South China Sea[J]. Frontiers in Marine Science, 8:637499. |
132 | Han G., Dong C.*, Yang J., Liu Y. (2021). Sri Lanka seasonal warm pools. Journal of Oceanology and Limnology. 39, 437–446, https://doi.org/10.1007/s00343-020-0112-8. |
131 | Han G., Dong C.*, Yang J., Sommeria J., Stegner A. Caldeira R. (2021). Strain Evolution and Instability of an Anticyclonic Eddy From a Laboratory Experiment. Frontiers in Marine Science, 8: 645531, https://doi.org/10.3389/fmars.2021.645531. |
130 | Ji Y., Xu G., Dong C.*, Yang J., Xia C.. 2021. Submesoscale eddies in the East China Sea detected from SAR images. Acta Oceanologica Sinica, 40(3): 18–26, doi:10.1007/s13131-021-1714-5 |
129 | Jiang, X., Dong, C.*, Ji, Y., Wang, C., Shu, Y., Liu, L., Ji, J. (2021). Influences of deep-water seamounts on the hydrodynamic environment in the Northwestern Pacific Ocean. Journal of Geophysical Research: Oceans, 126, e2021JC017396. https://doi.org/10.1029/2021JC017396. |
128 | Liang J.*, Liu J., Benfield M., Justic D., Holstein D., Liu B., Hetland R., Kobashi D., Dong C., Dong W. (2021). Including the effects of subsurface currents on buoyant particles in Lagrangian particl tracking models: Model development and its application to the study of riverborne plastics over the Louisiana/Texas shelf, Ocean Modelling,167: 101879, https://doi.org/10.1016/j.ocemod.2021.101879. |
127 | Meng Y., Liu H.*, Lin P., Ding M., Dong C.(2021). Oceanic mesoscale eddy in the Kuroshio extension: Comparison of four datasets. Atmospheric and Oceanic Science Letters, 14. |
126 | Sun W., Yang J., Tan W., Liu Y., Zhao B., He Y., Dong C.*. 2021. Eddy diffusivity and coherent mesoscale eddy analysis in the Southern Ocean. Acta Oceanologica Sinica, 40(10): 1–16, doi: 10.1007/s13131-021-1881-4 |
125 | Sun W., Liu Y., Chen G., Tan W., Lin X., Guan Y., Dong C.*. 2021. Three-dimensional properties of mesoscale cyclonic warm-core and anticyclonic cold-core eddies in the South China Sea. Acta Oceanologica Sinica, 40(10): 17–29, doi:10.1007/s13131-021-1770-x |
124 | Teng F., Dong C.*, Ji J., Brandon J. B., Pan A., Xu C..(2021). Does the wind stress always damp an oceanic eddy? Geoscience Letters, 8:36, https://doi.org/10.1186/s40562-021-00206-7 |
123 | Tian Q.*, Xu K., Dong C., Yang S., He Y., Shi B.(2021). Declining sediment discharge in the Yangtze River from 1956 to 2017: Spatial and temporal changes and their causes. Water Resources Research, 57, e2020WR028645. |
122 | Wang Q., Dong C.*, Li J., Yan J., Tian Q.(2021). Numerical Study of the Seasonal Salinity Budget of the Upper Ocean in the Bay of Bengal in 2014, Journal of Oceanology and Limnology, doi:10.1007/s00343-020-0285-1. |
121 | Wang S., Feng M.*, Dong C.*, Zhu, W. (2021). Observations of SST-induced wind perturbations in the Leeuwin Current. Journal of Geophysical Research: Oceans, 126, e2020JC016993. |
120 | Wei X., Zhang Y., Dong C.*, Jin M., Xia C. 2021. An approach to determine coeffi cients of logarithmic velocity vertical profi le in the bottom boundary layer*. Journal of Oceanology and Limnology, https://doi.org/10.1007/s00343-021-0373-x |
119 | Xu G., Xie W., Dong C.*, Gao X. (2021). Application of Three Deep Learning Schemes Into Oceanic Eddy Detection. Frontiers in Marine Science, 8: 672334, https://doi.org/10.3389/fmars.20210.672334 |
118 | You Z., Liu L., Bethel B.J., Dong C.*. 2021. Feature Comparison of Two Mesoscale Eddy Datasets Based on Satellite Altimeter Data. Remote Sens. 14, 116. https://doi.org/10.3390/rs14010116 |
117 | Zhang Y., Song M.*, Dong C., Liu J. (2021). Modeling turbulent heat fluxes over Arctic sea ice using a maximum-entropy-production approach. Advances in Climate Change Research, 12(4):517-526, Science, 8: 645531, https://doi.org/10.3389/fmars.2021.645531. |
116 | Zhao H., Feng Y., Dong C., Li Z.*. 2021. Spatiotemporal distribution of Decapterus maruadsi in spring and autumn in response to environmental variation in the northern South China Sea. Regional Studies in Marine Science, 45:101811. https://doi.org/10.1016/j.rsma.2021.101811 |
115 | Zhou S., Xie W., Lu Y., Wang Y., Zhou Y., Hui N., Dong C.* (2021). ConvLSTM-Based Wave Forecasts in the South and East China Seas. Frontiers in Marine Science, 8: 680079, https://doi.org/10.3389/fmars.2021.680079. |
114 | Zhou S., Bethel B.J., Sun W., Zhao Y., Xie W., Dong C.* (2021). Improving Significant Wave Height Forecasts Using a Joint Empirical Mode Decomposition–Long Short-Term Memory Network. Journal of Marine Science and Engineering, 9: 744, https://doi.org/10.3390/jmse9070744. |
113 | Cao Y., Li C., Dong C.* (2020). Atmospheric Cold Front-Generated Waves in the Coastal Louisiana[J]. Journal of Marine Science and Engineering, 8(11):900. |
112 | Dong J., Fox‐Kemper B., Zhang H., Dong C. *(2020). The scale of submesoscale baroclinic instability globally. J. Phys. Oceanogr, 1-58, doi:10.1175/JPO-D-20-0043.1. |
111 | Dong J., Fox‐Kemper B., Zhang H., Dong C.* (2020). The seasonality of submesoscale energy production, content, and cascade. Geophysical Research Letters, 47, e2020GL087388. https://doi.org/10.1029/2020GL087388. |
110 | Ji J., Ma J., Dong C.*, John C.H. Chiang, Chen D. (2020). Regional Dependence of Atmospheric Responses to Oceanic Eddies in the North Pacific Ocean. Remote Sensing, 12(7): 1161-1178.doi:10.3390/rs12071161. |
109 | Kuang Z., Song Z,*, Dong C.. 2020. Study on the Future Projection of Global Sea Surface Temperature over 21st Century Using a Biases Correction Model Based on Machine Learning. Climate Change Research Letters, 9(4):270-284. DOI: 10.12677/ccrl.2020.94031. 匡志远, 宋振亚*, 董昌明.(2020). 基于机器学习订正模型的未来百年全球海表温度预估研究[J]. 气候变化研究快报, 9(4):270-284. DOI: 10.12677/ccrl.2020.94031. |
108 | Lim K , Dong C.*, Liu H., Wu R. (2020). Effects of Model Coupling on Typhoon Kalmaegi (2014) Simulation in the South China Sea. Atmosphere, 11(4), 432, doi:10.3390/atmos11040432 |
107 | Liu X.*, Wang D., Su J., Chen D., Lian T., Dong C., Liu T.(2020). On the vorticity balance over steep slopes: Kuroshio intrusions northeast of Taiwan, Journal of Physical Oceanography, doi: 10.1175/jpo-d-19-0272.1 |
106 | Wang H., Dong C.*, Yang Y., Gao X., (2020). Parameterization of Wave-Induced Mixing Using the Large Eddy Simulation (LES) (I). Atmosphere, 11:207, doi:10.3390/amos11020207 |
105 | Wang J., Dong C.*, Yu K.,(2020). The influences of the Kuroshio on wave characteristics and wave energy distribution in the East China Sea. Deep-Sea Research Part I, doi:10.1016/j.dsr.2020.103228 |
104 | Xu J., Cao Y., Yang Y., Dong C., Wang J., Zhu W.(2020). Numerical simulation of multi-scale temporal variations of sea surface wind and wave field in the offshore area of the northern Jiangsu province[J]. Advancesin Marine Science, 2020,38(4):600-623. 徐瑾, 曹玉晗, 杨永增, 董昌明, 王锦, 朱伟军*.(2020). 2016年苏北近海风场和波浪场多时间尺度变化的数值模拟研究[J]. 海洋科学进展, 38(4):600-623. |
103 | Yang X , Xu G , Liu Y , Sun, W., Dong, C.*(2020). Multi-Source Data Analysis of Mesoscale Eddies and Their Effects on Surface Chlorophyll in the Bay of Bengal[J]. Remote Sensing, 12(21):3485. |
102 | Zhang Y., Dong C., Chen X.*, Wang Y.(2020). Observation of submesoscale turbulence in a cyclonic eddy. Ocean Dynamics, doi:10.1007/s10236-020-01349-5 |
101 | Wei Z., Zheng Q., ..., Dong C., et al. Physical oceanography research in China over past 70 years:Overview of development history and academic achievements[J]. Haiyang Xuebao,2019, 41(10):23–64,doi:10.3969/j.issn.0253−4193.2019.10.003. |
100 | Chen L., Dong C., Wang G.*, (2019). GOCI-Observed Chlorophyll Belts Associated With Sea-Surface Fronts in the East China Sea. IEEE Geoscience and Remote Sensing Letters, doi: 10.1109/LGRS.2019.2947175 |
99 | Dong C.*, Gao X., Zhang Y., Yang J., Zhang H., Chao Y., (2019). Multiple-scale Variations of Sea Ice and Ocean Circulation in the Bering Sea Using Remote Sensing Observations and Numerical Modeling, Remote Sensing, 11, 1484; doi:10.3390/rs11121484. |
98 | Dong C.*, Lim K.,(2019). Rossby Waves, Encyclopedia of Ocean Sciences (Third Edition). Volume 3, Pages 650-655, https://doi.org/10.1016/b978-0-12-409548-9.11442-3 |
97 | Dong J., Robertson R., Dong C.*, Hartlipp P. S., Zhou T., Shao Z., et al. (2019). Impacts of mesoscale currents on the diurnal critical latitude dependence of internal tides: A numerical experiment based on Barcoo Seamount. Journal of Geophysical Research: Oceans, 124. https://doi.org/10.1029/2018JC014413 |
96 | Gao X., Dong C.*, Liang J., Yang J., Li G., Wang D., McWilliams J. (2019). Convective instability-induced mixing and its parameterization using large eddy simulation, Ocean Modeling,137: 40–51. |
95 | Han G., Dong C.*, Li J., Yang J., Wang Q., Liu Y., J. Sommeria, (2019),.SST Anomalies in the Mozambique Channel Using Remote Sensing and Numerical Modeling Data, Remote Sens. 11, 1112; doi:10.3390/rs11091112 |
94 | Liao G.*, Xu X., Dong C., Chao H., Wang T., (2019). Three-Dimensional Baroclinic Eddies in the Ocean: Evolution, Propagation, Overall Structures, and Angular Models. Journal of Physical Oceanography, doi: 10.1175/JPO-D-18-0237.1 |
93 | Robertson R.*, Dong C., (2019). An evaluation of the performance of vertical mixing parameterizations for tidal mixing in the Regional Ocean Modeling System (ROMS). Geoscience Letters, 6:15, doi:10.1186/s40562-019-0146-6. |
92 | Sun W., Dong C.*, Tan W., He Y., (2019). Statistical Characteristics of Cyclonic Warm-Core Eddies and Anticyclonic Cold-Core Eddies in the North Pacific Based on Remote Sensing Data. Remote Sensing, 11:208, doi:10.3390/rs11020208. |
91 | Wang, S., Zhu W., Ma J., Ji J., Yang J., Dong C.* , (2019). Variability of the Great Whirl and Its Impacts on Atmospheric Processes, Remote Sens. 11, 322; doi:10.3390/rs11030322. |
90 | Xu G., Cheng C.,Yang W., Xie W., Kong L., Hang R., Ma F., Dong C.*, Yang J., (2019). Oceanic Eddy Identifcation Using an AI Scheme, Remote Sensing, 11, 1349, doi:10.3390/rs111111349. |
89 | Xu G., Dong C.*, Liu Y., Gaube P., Yang J. (2019). Chlorophyll Rings around ocean Eddies in the North Pacific, Scientific Reports, 9:2056 | https://doi.org/10.1038/s41598-018-38457-8. |
88 | Xu G., Han G., Dong C.*, Yang J., Brad D.Y., (2019). Observing and Modeling the Response of Placentia Bay to an Extratropical Cyclone. Atmosphere, 10:724, doi:10.3390/atmos10110724. |
87 | Yu K., Liu H., Chen Y., Dong C.*, Dong J., Yan Y., Wang D., (2019). Impacts of the mid-latitude westerlies anomaly on the decadal sea level variability east of China. Climate Dynamics, 53:5985, doi:10.1007/s00382-019-04909-8. |
86 | Yu Y., Dong C.*, Shan H., Zou B., (2019). Statistical analysis of intensity variations in tropical cyclones in the East China Sea passing over the Kuroshio. Journal of Oceanology and Limnology, doi:10.1007/s00343-019-9069-x |
85 | Zhang Y., Chen X.*, Dong C.*, (2019). Anatomy of a Cyclonic Eddy in the Kuroshio Extension Based on High-Resolution Observations. Atmosphere, 10: 553, doi:10.3390/atmos10090553. |
84 | Lu X., Dong C.*, Li G.. 2018. Variations of typhoon frequency and landfall position in the East China Sea from 1951 to 2015. Trans. Atmos. Sci., 41(4):433-440, doi:10.13878/j.cnki.dqkxxb.20170803001.(in Chinese). |
83 | Cao Y., Dong C.*, Uchiyama, Y., Wang, J., Yin, X. (2018). Multiple-scale variations of wind-generated waves in the Southern California Bight. Journal of Geophysical Research: Oceans, 123, 9340–9356. https://doi.org/10.1029/2018JC014505 |
82 | Dong C.*, Cao Y., McWilliams J. (2018). Island Wakes in Shallow Water. Atmosphere-Ocean, 56(2), 96-103. |
81 | Dong C.*, Xu G., Han G.*, Chen N., He Y., Chen D. (2018). Identification of tidal mixing fronts from high-resolution along-track altimetry data. Remote Sensing of Environment, 209, 489-496. |
80 | Ji J., Dong C.*, Zhang B.*, Liu Y., Zou B., King G. P., et al. (2018). Oceanic eddy characteristics and generation mechanisms in the Kuroshio Extension region. Journal of Geophysical Research: Oceans, 123. https://doi.org/10.1029/2018JC014196. |
79 | Lin X., Dong C.*, Chen D. (2018). Cross-basin particle transport by a warm eddy southwest of Taiwan Island. Journal of Tropical Oceanography, 37(3), 9-18.doi:10.11978/2017077 (in Chinese). |
78 | Ma J.*, Chadwick R., Seo K. H., Dong C., Huang G., Foltz G. R. (2018). Responses of the Tropical Atmospheric Circulation to Climate Change and Connection to the Hydrological Cycle. Annual Review of Earth & Planetary Sciences, 46, 549-580. |
77 | Shan H., Dong C.*, (2018). Atmospheric responses to oceanic mesoscale eddies based on an idealized model, Int J Climatol. , doi: 10.1002/joc.5908 |
76 | Shi H. Cao Y., Dong C.* (2018). The Spatio-Temporal Evolution of River Island Based on Landsat Satellite Imagery, Hydrodynamic Numerical Simulation and Observed Data, remote sensing, 12.16, 10:2046 |
75 | Sun W., Dong C.*, Tan W., Liu Y., He Y., Wang J. (2018). Vertical Structure Anomalies of Oceanic Eddies and Eddy-Induced Transports in the South China Sea. Remote Sensing, 10(5), 795. |
74 | Wang H., Yang Y., Dong C.*, T. Su, B. Sun, B. Zou, (2018). Validation of an Improved Statistical Theory for Sea Surface Whitecap Coverage Using Satellite Remote Sensing Data, Sensors, 2018.10, 18(10),3306 |
73 | Xia Q., He Y.*, Dong C., Wei E. (2018). Prediction of the south china sea dipole using SSA-MEM. Atmosphere-ocean, 1-14. |
72 | Zhang Y., Xu H.*, Qiao F., Dong C.* , (2018). Seasonal variation of the global mixed layer depth: Comparison between Argo data and FIO-ESM. Frontiers of Earth Science, 12(1), 24-36. |
71 | Dong C.*, Jiang X., Xu G., Ji J., Lin X., Sun W., Wang S. (2017). Automated Eddy Detection Using Geometric Approach, Eddy Datasets and TheirApplication. Advances in Marine Science, 35(4):439-435, doi:doi:10.3969/ji.ssn.1671-6647.2017.04.001. |
70 | Chen Y.*, Yu K., Dong C., He Z., Yan Y., Wang D.* , (2017). Evaluation of Satellite-Altimetry-Derived Pycnocline Depth Products in the South China Sea. Remote Sensing, 9(8), 822. |
69 | Chu X.*, Dong C., Qi Y. (2017). The influence of ENSO on an oceanic eddy pair in the South China Sea. Journal of Geophysical Research: Oceans, 122(3), 1643-1652. |
68 | Ji J., Dong C., Zhang B.*, Liu Y. (2017). An oceanic eddy statistical comparison using multiple observational data in the Kuroshio Extension region. Acta Oceanologica Sinica, 36(3), 1-7. |
67 | Jiang L., Dong C.*, Yin L. (2017). Cross-shelf transport induced by coastal trapped waves along the coast of East China Sea. Chinese Journal of Oceanology & Limnology (1), 1-11. |
66 | Liu Y., Dong C.*, Liu X., Dong J. (2017). Antisymmetry of oceanic eddies across the Kuroshio over a shelfbreak. Scientific Reports, 7(1), 6761. |
65 | Shan H., Dong C.* , (2017). The SST–wind coupling pattern in the East China Sea based on a regional coupled ocean–atmosphere model. Atmosphere-ocean, 55(4), 1-17. |
64 | Shi H., Gao C., Dong C.*, Xia C., Xu G., (2017) . Variation of River Islands around a Large City along the Yangtze River from Satellite Remote Sensing Images. Sensors, 17(10):2213. |
63 | Sun W., Dong C.*, Wang R., Liu Y., Yu K. (2017). Vertical structure anomalies of oceanic eddies in the Kuroshio Extension region. Journal of Geophysical Research: Oceans, 122(2), 1476-1496. |
62 | Yu K., Dong C.*, King G.* , (2017). Turbulent kinetic energy of the ocean winds over the Kuroshio Extension from QuikSCAT winds (1999–2009).Journal of Geophysical Research: Oceans, 122(6), 4482-4499. |
61 | Zhou Q., Hu G., Sun Y.*, Liu X., Song Y., Dong L., Dong C. (2017). Numerical research on evolvement of submarine sand waves in the Northern South China Sea. Frontiers of Earth Science, 11(1), 35-45. |
60 | Li J., Liang C., Tang Y.*, Dong C., Chen D., Liu X., Jin W. (2016). A new dipole index of salinity anomalies of tropical Indian Ocean. Scientific Reports, 6:24260, doi:10.1038/srep24260. |
59 | Liu X.*, Chen D., Dong C., He H., (2016). Variation of the Kuroshio intrusion pathways northeast of Taiwan using the Lagrangian method.Science China Earth Sciences, 59(2), 268-280. |
58 | Ma J.*, Foltz G. R., Soden B. J., Huang G., He J., Dong C. (2016). Will surface winds weaken in response to global warming?. Environmental Research Letters, 11(12), 124012 |
57 | Ma J., Xu H.*, Dong C. (2016). Seasonal variations in atmospheric responses to oceanic eddies in the Kuroshio extension.Journal of Geophysical Research Atmospheres, 120(13), 6313-6330. |
56 | Shan H., Guan Y.*, Huang J., Dong C. (2016). Trajectory patterns of the annual cycle of the heat centre of the Indo-Pacific warm pool. International Journal of Climatology, 37(2). |
55 | Sun Y., Dong C.*, He Y.*, Yu K., Renault L., Ji J. (2016). Seasonal and interannual variability in the wind-driven upwelling along the Southern East China Sea coast.IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 9(11), 5151-5158. |
54 | Wang J.*, Dong C., He Y. (2016). Wave climatological study in the East China Sea. Continent Shelf Research, 120, 26-40. |
53 | Chen G., Wang D.*, Dong C., Zu T., Xue H., Shu Y., et al. (2015). Observed deep energetic eddies by seamount wake. Scientific Reports, 5, 17416 , doi:10.1038/srep17416. |
52 | Chen X., Liang C.*, Dong C., Zhou B., Liao G., Li J. (2015). Multiple-scale temporal variations and fluxes near a hydrothermal vent over the Southwest Indian Ridge. Frontiers of Earth Science, 9(4), 691-699. |
51 | Chen X., Liang C.*, Dong C. 2015. Detecion and flux estimation of hhydrothermal plumes in the Longqi hydrothermal field in the Southwest Indian Ocean. Journal of Marine Sciences, 33(4):43-52, doi:10.3969/j.issn,1001-909X.2015.04.005. |
50 | Dong C.*, Chen D., Ou H. W. (2015). Numerical study on tidally induced cross- frontal mean circulation. Atmosphere-Ocean, 53(3), 363-375. |
49 | Li J., Liang C.*, Dong C., Jin W., Liao G., Zhou B., et al. (2015). Conversion of pressure to depth for moored instruments using a reference bottom mounted pressure sensor. Atmosphere-Ocean, 53(4), 377-382. |
48 | Liao G., Zhou B., Liang C.*, Zhou H., Ding T., Wang Y., Dong C.(2015). Moored observation of abyssal flow and temperature near a hydrothermal vent on the Southwest Indian Ridge. Journal of Geophysical Research Oceans, 121(1), 836-860. |
47 | Lin X., Dong,C.*, Chen,D., Liu,Y., Yang J., Zou B., et al. (2015). Three-dimensional properties of mesoscale eddies in the South China Sea based on eddy-resolving model output. Deep Sea Research Part I Oceanographic Research Papers, 99,46-64. |
46 | Liu X., Dong C., Chen D.*, Su J. (2015). The pattern and variability of winter Kuroshio intrusion northeast of Taiwan.Journal of Geophysical Research Oceans, 119(8), 5380-5394. |
45 | Ma J., Xu H.*, Dong C., Lin P., Liu Y. (2015). Atmospheric responses to oceanic Eddies in the Kuroshio Extension region. Journal of Geophysical Research: Atmospheres, 120: 6313-6330. |
44 | Qin D., Wang J.*, Liu Y., Dong C.* , (2015). Eddy analysis in the Eastern China Sea using altimetry data. Frontiers of Earth Science, 9(4), 709-721. |
43 | Xu G., Yang J.*, Dong C., Chen D., Wang J. (2015). Statistical study of submesoscale eddies identified from synthetic aperture radar images in the Luzon Strait and adjacent seas. International Journal of Remote Sensing, 36(18), 4621-4631. |
42 | Yu K.*, Qu T., Dong C.*, Yan Y. (2015). Effect of subtropical mode water on the decadal variability of the subsurface transport through the Luzon Strait in the Western Pacific Ocean. Journal of Geophysical Research Oceans, 120(10). |
41 | Cheng H., Liang C., Dong C., Liu Z. (2014). Temporal and spatial disreibution of local typhoon and non-local typhoon in the South China Sea. Journal of Marine Sciences, 32(1):19-30, doi:10.3969/j.issn.1001-909X.2014.01.003. |
40 | Dong C., Mcwilliams J. C., Liu Y., Chen D.* (2014). Global heat and salt transports by eddy movement. Nature Communications, 5(2), 3294. |
39 | Liao G.*, Xu X., Liang C., Dong C., Zhou B., Ding T., et al. (2014). Analysis of kinematic parameters of internal solitary waves in the Northern South China Sea. Deep Sea Research Part I Oceanographic Research Papers, 94, 159-172. |
38 | Liu, X., Dong, C., Chen, D., Su, J.(2014). The pattern and variability of winter Kuroshio intrusion northeast of Taiwan. Journal of Geophysical Research: Ocean, 119: 5380-5394, doi: 10.1002/2014JC009879. |
37 | Ma J., Xu H., Dong C.* (2014). Atmospheric response to mesoscale oceanic eddies over the Kuroshio Extension: Case analyses of warm and cold eddies in winter [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38 (3): 438−452. |
36 | Lazar A.*, Stegner A., Caldeira R., Dong C., Didelle H., Vuiboud S. (2013). Inertial instability of intense and stratified anticyclones. Part 2: lLaboratory experiments. Journal of Fluid Mechanics, 732, 485-509. |
35 | Qiu S., Liang C.*, Dong C., Liu Z. (2013). Analysis of the temporal and spatial variations in the wind and wave over the South China Sea. Journal of Marine Sciences, 31(1), doi:1001-909X(2013)04-0001-09. |
34 | Dickey T.*, Banner M. L., ..., Dong C., et al. (2012). Introduction to special section on recent advances in the study of optical variability in the near-surface and upper ocean. Journal of Geophysical Research Oceans, 117(C7), 50-60. |
33 | Dong C.*, Lin X., Liu Y., Nencioli F., Chao Y., Guan Y., et al. (2012). Three-dimensional oceanic eddy analysis in the Southern California Bight from a numerical product. Journal of Geophysical Research Oceans, doi:10.1029/2011JC007354. 117, C00H14. |
32 | Liu Y., Dong C., Guan Y.*, Chen D., Mcwilliams J., Nencioli F. (2012). Eddy analysis in the subtropical zonal band of the North Pacific Ocean. Deep-Sea Research Part I, 68(5), 54-67. |
31 | Dong C.*, Liu Y., Lumpkin R., Lankhorst M., Chen D., McWilliams J., Guan Y. (2011). A scheme to identify loops from trajectories of ocean surface drifters: An Application in the Kuroshio Extension Region. Journal of Atmospheric and Oceanic Technology, 28, doi:10.1175/JTECH-D-10-050. |
30 | Dong C.*, Mcwilliams J. C., Hall A., Hughes M. (2011). Numerical simulation of a synoptic event in the Southern California Bight. Journal of Geophysical Research Oceans, 116, C05018, doi:10.1029/2010JC006578. |
29 | Dong C.*, Nencioli F., Liu Y., Mcwilliams J. C. (2011). An automated approach to detect oceanic eddies from satellite remotely sensed sea surface temperature data. IEEE Geoscience & Remote Sensing Letters,8(6), 1055-1059. |
28 | Watson J. R.*, Hays C. G., Raimondi P. T., Mitarai S., Dong C., Mcwilliams J.C., et al. (2011). Currents connecting communities: nearshore community similarity and ocean circulation. Ecology, 92(6), 1193-1200. |
27 | Lazar A.*, Stegner A., Caldeira R., Pennel R., Dong C., Didelle H., Viboud S., (2010). Vortex Assymetry in Island Wakes. Hydralab III Joint User Meeting. |
26 | Nencioli F.*, Dong C., Dickey T., Washburn L., Mcwilliams J. C. (2010). A vector geometry-based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency California Bight. Journal of Atmospheric & Oceanic Technology, 27(3), 564. |
25 | Watson J. R.*, Mitarai S., Siegel D. A., Caselle J. E., Dong C., Mcwilliams J. C.(2010). Realized and potential larval connectivity in the Southern California Bight. Marine Ecology Progress, 401(6), 31-48. |
24 | Dong C.*, Idica E. Y., Mcwilliams J. C. (2009). Circulation and multiple-scale variability in the southern california bight. Progress in Oceanography, 82(3), 168-19. |
23 | Dong C.*, Mavor T., Nencioli F., Jiang S., Uchiyama Y., McWilliams J., Dickey T., Ondrusek M., Dennis D., Zhang H. (2009). An ocean cyclonic eddy on lee side of Lanai Island, Hawaii, Journal of Geophysical Research Oceans, 114, C10008, doi:10.1029/2009JC005346. |
22 | Jin X.*, Dong C., McWilliams J., Kurian J., Chelton D., Li Z. (2009). SST-Wind Interaction in coastal upwelling: oceanic simulation with empirical coupling, Journal of Physical Oceanography, 39, 2957-2970, doi: 10.1175/2009JPO4205.1. |
21 | Mitarai S.*, Siegel D. A., Watson J. R., Dong C., Mcwilliams J. C. (2009). Quantifying connectivity in the coastal ocean with application to the Southern California Bight. Journal of Geophysical Research Oceans, 114, C10026, doi:10.1029/2008JC005166. |
20 | Sangra P.*, Pascual A., ..., Dong C., et al. (2009). The Canary Eddy Corridor: A major pathway for long-lived eddies in the subtropical North Atlantic. Deep Sea Research Part I Oceanographic Research Papers, 56(12), 2100-2114. |
19 | Wang X., Chao Y*., Dong C., Farrara J., Li Z., Mcwilliams J. C., et al. (2009). Modeling tides in monterey bay, California. Deep-Sea Research Part II, 56(3), 219-231. |
18 | Blaas M., Dong C., Marchesiello P., Mcwilliams J.*, Stolzenbach K. (2007). Sediment-transport modeling on Southern Californian shelves: A ROMS case study. Continental Shelf Research, 27(6), 832-853. |
17 | Dong C.*, Mcwilliams J. C., Shchepetkin A. F. (2007). Island wakes in deep water. Journal of Physical Oceanography, 37(4), 962-981. |
16 | Dong C.*, Mcwilliams J. C. (2007). A numerical study of island wakes in the Southern California Bight. Continental Shelf Research, 27(9), 1233-1248. |
15 | Dong C., Oey L. Y.* (2005). Sensitivity of coastal currents near point conception to forcing by three different winds: ECMWF, COAMPS, and Blended SSM/I ECMWF Buoy Winds. Journal of Physical Oceanography,35(7), 1229-1244. |
14 | Dong C.*, Houghton, R., Ou, H. W., Chen, D., Ezer, T. (2004). Numerical study of the diapycnal flow through a tidal front with passive tracers. Journal of Geophysical Research Oceans, 109, C05029, doi:10.1029/2003JC001969. |
13 | Dong C.*, Ou H. W., Chen D., Visbeck M. (2004). Tidal induced cross-frontal circulation: Analytical Study, Journal of Physical Oceanography, 34, 293-305. |
12 | Li X.*, Dong C., Clemente-Colon P., Pichel W., Friedman K. (2004). Synthetic aperture radar observation of the sea surface imprints of upstream atmospheric solitons generated by flow impeded by an island, Journal of Physical Oceanography, 109, C02016, doi: 1029/2003/JC002168. |
11 | Ou H. W.*, Dong C., Chen D. (2003). Tidal diffusivity: A mechanism for frontogenesis. Journal of Physical Oceanography, 33(4), 840-847. |
10 | Chen D.*, Ou H. W., Dong C. (2001). A model study of internal tides in coastal frontal zone. Journal of Physical Oceanography, 33(1), 170-187. |
9 | Ou H. W.*, Dong C., Chen D. (2000). On the tide-induced property flux: Can it be locally counter gradient? Journal of Physical Oceanography., 30, 1472-1477. |
8 | Dong C., Yuan Y., Zhang Q. (1997). Study on the fluid dynamical mechanism for the formation of tidal current sand ridges in shelf seas. Oceanologia et Linmologia Sinica, 28(supplement):199-204. |
7 | Dong C.*, Yuan Y., Zhang Q.(1997). Cascade theoretical model of turbulence secondary flows. Oceanologia et Linmologia Sinica, 28(supplement):199-204. |
6 | Dong C.*, Chen S., Zhang Q., Yuan Y. (1996). On multiple solutions to a low-spectrum model of oceanic current driven by the boundary force-the bimodality of the kuroshio south of Japan. Chinese Journal of Oceanology and Limnology, 14(2), 113-120, doi:10.1007/BF028 |
5 | Dong C.*, Yuan Y. (1996). Theoretical Basis of Satellite Altimeter-derived Sea Surface Height Temporal Anomaly Inversion for Mean Fields. Avta Oceanologica Sinica, 18(3):53-57. |
4 | Dong C.*, Zhang Q. (1995). On further application of the thin-jet model into the bimodality of Kuroshio. Oceanologia et Linmologia Sinica, 26(5): 567-569. |
3 | Dong C.*, Zhang Q. (1995). Dynamical Characteristics of the bimodality of Kuroshio. Avta Oceanologica Sinica. 17(1):130-136. |
2 | Dong C.*, Yuan Y. (1994). Advances in the Research on the Dynamics of Circulation in the Southern Ocean. Journal of Oceanography of Huanghai & Bohai Seas, 12(4):34-38. |
1 | Zhang Q.*, Dong C. (1993). On the Corelation of the Diluted Water of Yangzi River and Ecological Environment of Its Adjacent Oceanic Area. Advances in Marine Science, 3: 27-29. |
团队名称:海洋数值模拟与观测实验室
团队介绍:南京信息工程大学海洋科学学院海洋数值模拟与观测实验室成立于2014年9月,是具有物理海洋特色的海洋研究机构。现有实验室成员17名,其中包括教授7名,讲师4名,工程师1名,博士后1名。成员中80%以上具有博士学位,47%的成员具有海外经历。实验室成员多年来在海洋动力学理论分析、涡旋自动探测、涡旋动力学、涡旋统计、卫星资料分析、现场资料分析、近岸海洋高分辨率数值模拟等方面开展了大量的研究工作,研究区域涵盖太平洋、大西洋沿岸,印度洋和北冰洋,其中一些工作具有相当的创新性。实验室带头人董昌明教授作为项目负责人在过去几年间完成了美国国家自然科学基金、美国国家航天航空局、美国海军研究办公室,以及美国海上能源管理局支持的多个项目。目前董昌明教授作为项目负责骨干正参加一项国家自然科学基金重大项目。实验团队的主要成员具有多年的合作经历,有的专攻海洋资料分析,有的长于数值模拟,有的理论分析功底深厚。