个人简介
计划招收2025年秋入学硕士生4名、博士生2名!长期招收博士后!非常期待您的加入!
第二届GEOS-Chem亚洲会议(GCA2)将于5月19-21日在南信大举行,诚邀投稿!网址https://geoschem.github.io/gca2.html 注册3月15日截止!
Call for Papers for JGR-Atmos Special Issue: "Emerging air pollution: emissions, chemistry, and health and climate effects" (2025年8月截止)
李柯,教授,博士生导师,籍贯河南南阳。本科毕业于南京信息工程大学,博士毕业于中国科学院大气物理研究所,入选国家海外优青、江苏特聘教授。
长期从事大气化学与气候变化领域的研究工作,主要利用大气化学数值模式、结合环境大数据和统计分析方法,致力于解决大气污染与气候领域的基础科学问题。研究成果揭示了我国近地表臭氧污染加剧成因,发现了华北臭氧污染季向冬季延长的现象;发现了高PM2.5条件下臭氧生成受到抑制的证据,提出PM2.5和臭氧污染协同控制策略;提出了基于全球贸易联系为基础的区域协同氨减排策略,提出了基于气候协同的全球臭氧控制策略;发现历史和未来气候变化能够显著增加华北灰霾天气的发生频率。
已发表SCI论文60余篇,被引6600余次。代表性成果发表在PNAS (2019, 2021)、Nature Geoscience (2019)、Nature Climate Change (2017)、Nature Communications (2021)、One Earth (2023)等高水平期刊。目前主持国家重点研发计划项目(青年)和国家自然科学基金项目等。担任中国环境科学学会臭氧污染控制专业委员会副秘书长、教育部气候与环境变化国际合作联合实验室副主任、国际对流层臭氧评估计划(TOAR II)东亚工作组co-lead,江苏省青年科技工作者协会理事;担任Science Bulletin和科学通报的特邀编委、Geophysical Research Letters副编辑、Environmental Research Letters编委、Science of The Total Environment编委、以及35种国际学术期刊的审稿工作。
See my CV (as of 2023.12), and my English homepage https://faculty.nuist.edu.cn/like/en/index.htm
研究兴趣:
大气臭氧污染的变化及成因
PM2.5和臭氧污染相互作用机制及协同控制
大气环境数值模拟
气候变化下极端污染事件的变化
大气污染物和碳排放的协同控制
大数据分析在大气环境中的应用
工作经历:
2021- 南京信息工程大学 教授、博士生导师
2018 - 2021 哈佛大学 博士后、助理研究员
2017 - 2018 中国科学院大气物理研究所 助理研究员
2015 & 2017 澳大利亚CSIRO 访问交流
荣誉获奖:
2024年 获阿里巴巴达摩院青橙奖
2024年 获“2024年度环境保护科学技术奖 青年科学家奖”
2024年 入选科睿唯安“全球高被引科学家”(地球科学领域)
2024年 获 Outstanding Reviewer Awards for Environmental Research Letters
2023年 入选科睿唯安“全球高被引科学家”(地球科学领域)
2023年 获谢义炳青年气象科技奖
2023年 获 “2021年度氮循环十大科学进展”(排名第1)
2022年 获 “2022年度环境保护科学技术奖一等奖”(排名第4)
2020年 获 “2019年度中国生态环境十大科技进展”(排名第2)
2017年 成果入选Nature Climate Change期刊封面论文
主讲课程:
《大气化学》、《环境数据分析、可视化及应用》、《环境科学概论》、《气溶胶观测与分析》
指导博士后:
刘静达(2024-,在职),陈曦(2023-,国资计划C档、江苏卓越博士后),刘振泽(2022-,国家海外博士后引才、江苏卓越博士后)
指导研究生:
谭容(硕2024-),王凡(硕2024-)
赵文晴(硕2023-)
Ellie Beaudry (哈佛大学博士生、访问学生 2023)
汪宇芬(硕2022-),唐明龙(硕2022-)
乔文昊(博2024-,硕2021-2024),候杰(硕2021-2024,大庆市人才引进)
杨镇江(硕博连读 2021-,与廖宏教授联合指导,德国马普化学所访问2年),张丹瑜婷(硕博连读 2020-,哈佛大学访问1年)
已发表论文 (详见 Publons, Google scholar)
(粗体为课题组成员,*为通讯作者,#为共同第一作者)
2025
[73] Li, K.*#, Tan, R.#, Qiao, W.#, Lee, T., Wang, Y., Zhang, D., Tang, M., Zhao, W., Gu, Y., Fan, S., Zhang, J., Lyu, X., Xue, L., Xu, J., Ma, Z., Latif, M. T., Amnuaylojaroen, T., Gil, J., Lee, M.-H., Bak, J., Kim, J., Liao, H., Kanaya, Y., Lu, X., Nagashima, T., and Koo, J.-H.*. Surface and tropospheric ozone over East Asia and Southeast Asia from observations: distributions, trends, and variability, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-3756.
[72] Chen, X., Li, K.*, Yang, T., Jin, X.P., Chen, L., Yang, Y., Zhao, S.M., Hu, B., Zhu, B., Wang, Z.F., and Liao, H. Simulated photochemical response to observational constraints on aerosol vertical distribution over North China, EGUsphere https://doi.org/10.5194/egusphere-2025-430
[71] Wang, Y., Li, K.*, Chen, X., Yang, Z., Tang, M., Campos, P. M. D., Yang, Y., Yue, X., and Liao, H. Revisiting the high tropospheric ozone over Southern Africa: Roles of biomass burning and anthropogenic emissions, Atmospheric Chemistry and Physics https://doi.org/10.5194/egusphere-2024-2576.
[70] Liu, X.L., Zhai, S.X.*, Li, K., Zhu, L., Liu, S., Shah, V., Tai, A., Geng, G.N., Hou, X.W., Mamtimin, A., Li, X., and Zhao, T.L.* Particulate matter (PM) and ozone air quality in Urumqi of Northwest China: seasonality, trends, and sources. Atmospheric Environment https://doi.org/10.1016/j.atmosenv.2025.121150
[69] Beaudry, E.*, Jacob, D.J., Bates, H.K., Zhai, S., Yang, L., Pendergrass, D., Colombi, N., Simpson, I., Wisthaler, A., Hopkins, J., Li, K., and Liao, H. Ethanol and Methanol in South Korea and China: evidence for large 5 anthropogenic emissions missing from current inventories ACS ES&T Air
[68] Kang, L., Liao, H.*, Li, K., Yue, X., Yang, Y., and Wang, Y. Effects of 2010–2045 climate change on ozone levels in China under carbon neutrality scenario: Key meteorological parameters and processes. Atmospheric Chemistry and Physics https://doi.org/10.5194/acp-25-3603-2025.
[67] Jiang, Z.Y. ,Zhu, B.*, Shi, S.S., Yang, S.Q., Tang, G.Q., Lu, W., An, J.L., Lu, C.S., Li, K., and Liao, H. Aerosol radiation effect outweighs VOCs reactivity effect on vertical ozone photochemical features. Journal of Geophysical Research-Atmosphere In revision.
[66] Gao, J.*, Huang, Y., Wright, J. S., Li, K., Geng, T., and Yu, Q. Estimation of aerosol and cloud radiative heating rate in tropical stratosphere using radiative kernel method. Geoscientific Model Development, https://doi.org/10.5194/egusphere-2024-2815.
[65] Yang, Z., Li, Z.*, Cheng, F., Lv, Q., Li, K., Zhang, T., Zhou, Y., Zhao, B., Xue, W., and Wei, J.* Two-decade surface ozone (O3) pollution in China: enhanced fine-scale estimations and environmental health implications. Remote Sensing of Environment https://doi.org/10.1016/j.rse.2024.114459
2024 (15)
[64] Chen, X., Li, K.*, Yang, T., Yang, Z.J., Wang, X.Q., Zhu, B., Chen, L., Yang, Y., Wang, Z.F., and Liao, H. Trends and drivers of aerosol vertical distribution over China from 2013 to 2020: Insights from integrated observations and modeling. Science of the Total Environment https://doi.org/10.1016/j.scitotenv.2024.170485 [PDF]
[63] Qiao, W.H., Li, K.*, Yang, Z.J., Chen, L., and Liao, H. Implications of the extremely hot summer of 2022 on urban ozone control in China. Atmospheric and Oceanic Science Letters https://doi.org/10.1016/j.aosl.2024.100470 [PDF]
[62] Li, B.J., Liao, H.*, Li, K., Wang, Y., Zhang, L., Guo, Y.X., Liu, L., Li, J.Y., Jin, J.B., Yang, Y., Gong, C., Wang, T., Shen, W.S., Wang, P.Y., Dang, R.J., Liao, K.H., Zhu, Q., and Jacob, D.J. Unlocking nitrogen management potential via large-scale farming for air quality and substantial Co-benefits National Science Review https://doi.org/10.1093/nsr/nwae324
[61] Wang, H.L., Lu, X.*, Palmer, P., Zhang, L., Lu, K.D., Li, K., Nagashima, T., Koo, J.H., Tanimoto, H., Wang, H.C., Gao, M., He, C., Wu, K., Fan, S.J.*, and Zhang, Y.H.* Deciphering decadal urban ozone trends from historical records since 1980 National Science Review https://doi.org/10.1093/nsr/nwae369
[60] Feng, W., Dong, G.H., Qi, W.Q., Wang, Y.Z., Zhang, X.Y., Li, K., Liao, H., Wang, Y.H., Shao, Z.J., and Xie, M.J.* Spatiotemporal variations of PM2.5 organic molecular markers in five central cities of the Yangtze River Delta, East China in autumn and winter: Implications for regional and local sources of organic aerosols Environmental Pollution https://doi.org/10.1016/j.envpol.2024.125227
[59] Cheng, F., Li, Z.Q.*, Yang, Z.Y., Li, R.H., Wang, D.D., Jia, A.L., Li, K., Zhao, B., Wang, S.X., Yin, D.J., Li, S.Y., Xue, W.H., Cribb, M., and Wei J.* First retrieval of 24-hourly 1-km-resolution gapless surface ozone (O3) from space in China using artificial intelligence: Diurnal variations and implications for air quality and phytotoxicity Remote Sensing of Environment https://doi.org/10.1016/j.rse.2024.114482
[58] Fang, L., Jin, J.*, Segers, A., Li, K., Xia, J., Han, W., Li, B., Lin, H. X., Zhu, L., Liu, S., and Liao, H.* Observational operator for fair model calibration with ground NO2 measurements. Geoscientific Model Development https://doi.org/10.5194/gmd-2023-216
[57] Guo, Y.X., Zhang, L.*, Winiwarter W.*, van Grinsven, H.J.M., Wang, X.L., Li, K., Pan, D., Liu, Z.H., and Gu, B.J. Ambitious nitrogen abatement is required to mitigate future global PM2.5 air pollution toward the World Health Organization targets. One Earth https://doi.org/10.1016/j.oneear.2024.08.007
[56] Wang, R.Y., Wang, L.L.*, Li, Y.Y., Sun, J.R.*, Li, K., Huang, H.J., You, Y.B., and Wang, Y.S. The reward and penalty for ozone pollution control caused by natural sources and regional transport: A case study in Guangdong province. Science of the Total Environment https://doi.org/10.1016/j.scitotenv.2024.174984
[55] Wang, X.Q., Zhu, J.*, Li, K., Chen, L., Yang, Y., Zhao, Y.Q., Yue, X., Gu, Y.X., and Liao, H. Meteorology-driven trends in PM2.5 concentrations and related health burden over India. Atmospheric Research https://doi.org/10.1016/j.atmosres.2024.107548 [PDF]
[54] Zhang, L., Wang, L.L.*, Ji, D., Xia, Z., Nan, P.F., Zhang, J.X., Li, K., Bing Qi, Rongguang Du, Yang Sun, Yuesi Wang, Bo Hu. Explainable ensemble machine learning revealing the effect of meteorology and sources on ozone formation in megacity Hangzhou, China. Science of the Total Environment https://doi.org/10.1016/j.scitotenv.2024.171295 [PDF]
[53] Yang, Y.*, Zhou, Y., Wang, H.L, Li, M.Y., Li, H.M., Li, M.Y., Wang, P.Y., Yue, X., Li, K., Zhu, J., and Liao, H. Meteorological characteristics of extreme ozone pollution events in China and their future predictions. Atmospheric Chemistry and Physics https://acp.copernicus.org/articles/24/1177/2024/ [PDF]
[52] Bai, Y., Chen, L.*, Feng, Z.J, Zhu, J., Gu, Y.X., Li, K., and Liao, H. Historical and future health burden attributable to PM2. 5 exposure in China. Atmospheric Environment https://doi.org/10.1016/j.atmosenv.2024.120363 [PDF]
[51] Ni, Y.Q., Yang, Y.*, Wang, H.L, Li, H.M., Li, M.Y., Wang, P.Y., Li, K., and Liao, H. Contrasting changes in ozone during 2019–2021 between eastern and the other regions of China attributed to anthropogenic emissions and meteorological conditions. Science of the Total Environment https://doi.org/10.1016/j.scitotenv.2023.168272 [PDF]
[50] Zhang, L., Wang, L.L.*, Wang, R.Y., Chen, N., Yang, Y., Li, K., Sun, J., Yao, D., Wang, Y.S, Tao, M.H., and Sun, Y. Exploring formation mechanism and source attribution of ozone during the 2019 Wuhan Military World Games: Implications for ozone control strategies. Journal of Environmental Sciences https://doi.org/10.1016/j.jes.2022.12.009 [PDF]
2023 (12)
[49] Lyu, X.P.#, Li, K.#, Guo, H.*, Morawska, L.*, Zhou, B.N., Zeren, Y.Z., Jiang, F., Chen, C.H., Goldstein, A., Xu, X.B., Wang, T., Lu, X., Zhu, T., Querol, X., Chatani, S., Latif, M.T., Schuch, D., Sinha, V., Kumar, P., Mullins, B., Seguel, R., Shao, M., Xue, L.K., Wang, N., Chen, J.M., Gao, J., Chai, F.H., Simpson, I., Sinha, B., and Blake, D. A synergistic ozone-climate control to address emerging ozone pollution challenges, One Earth https://doi.org/10.1016/j.oneear.2023.07.004 [PDF].
[48] Wang, R.Y., Wang, L.L.*, Sun, J.R.*, Zhang, L., Li, Y.Y., Li, K., Liu, B.Y., Zhang, J.X., and Wang, Y.S. Maximizing ozone control by spatial sensitivity-oriented mitigation strategy in the Pearl River Delta Region, China Science of the Total Environment https://doi.org/10.1016/j.scitotenv.2023.166987 [PDF]
[47] Chen, L., Liao, H.*, Li, K., Zhu, J., Long, Z.Y., Yue, X., Yang, Y., and Zhang, M.G. Process-level quantification on opposite PM2.5 changes during COVID-19 lockdown over North China Plain Environmental Science & Technology Letters https://doi.org/10.1021/acs.estlett.3c00490 [PDF]
[46] Fang, L., Jin, J.B.*, Segers, A., Liao, H.*, Li, K., Xu, B.F., Han, W., Pang, M.J., and Lin, H.X. A gridded air quality forecast through fusing site-available machine learning predictions from RFSML v1.0 and chemical transport model results from GEOS-Chem v13.1.0 using the ensemble Kalman filter, Geoscientific Model Development https://gmd.copernicus.org/articles/16/4867/2023/ [PDF]
[45] Li, P., Yang, Y.*, Wang, H., Li, S., Li, K., Wang, P., Li, B., and Liao, H. Source attribution of near-surface ozone trends in the United States during 1995–2019. Atmospheric Chemistry and Physics https://doi.org/10.5194/acp-23-5403-2023 [PDF]
[44] Li, S., Yang Y.*, Wang, H., Li, P., Li, K., Ren, L., Wang, P., Li, B., Mao, Y., and Liao, H., Rapid increase in tropospheric ozone over Southeast Asia attributed to changes in precursor emission source regions and sectors. Atmospheric Environment https://doi.org/10.1016/j.atmosenv.2023.119776 [PDF]
[43] Zhai, S.*, Jacob, D. J., Pendergrass, D. C., Colombi, N. K., Shah, V., Yang, L. H., Zhang, Q., Wang, S., Kim, H., Sun, Y., Choi, J.-S., Park, J.-S., Luo, G., Yu, F., Woo, J.-H., Kim, Y., Dibb, J. E., Lee, T., Han, J.-S., Anderson, B. E., Li, K., and Liao, H. Coarse particulate matter air quality in East Asia: implications for fine particulate nitrate. Atmospheric Chemistry and Physics https://doi.org/10.5194/acp-23-4271-2023 [PDF]
[42] Jin, J.B., Fang, L., Li, B.J., Liao, H.*, Wang, Y., Han, W., Li, K., Pang, M.J., Wu, X.Y, and Lin, H.X. 4DEnVar-based inversion system for ammonia emission estimation in China through assimilating IASI ammonia retrievals. Environmental Research Letters https://doi.org/10.1088/1748-9326/acb835 [PDF]
[41] Li, H., Yang, Y.*, Jin, J., Wang, H., Li, K., Wang, P., and Liao, H. Climate-driven deterioration of future ozone pollution in Asia predicted by machine learning with multi-source data. Atmospheric Chemistry and Physics https://doi.org/10.5194/acp-23-1131-2023 [PDF]
[40] Dai, H.B., Liao, H.*, Li, K., Yue, X., Yang, Y., Zhu, J., Jin, J., and Li, B. Composited analyses of the chemical and physical characteristics of co-polluted days by ozone and PM2.5 over 2013–2020 in the Beijing–Tianjin–Hebei region. Atmospheric Chemistry and Physics https://doi.org/10.5194/acp-23-23-2023 [PDF]
[39] Meng, Z., Yan, K.J., Li, K., Gao, J.L., and Zhang, B.* Revealing Non-CO2 GHG Emissions in China's Transportation Networks. Environmental Science & Technology Letters https://doi.org/10.1021/acs.estlett.2c00832 [PDF](Journal cover)
[38] Chen, L., Liao, H.*, Zhu, J., Li, K., Bai, Y., Yue, X., Yang, Y., Hu, J.L., and Zhang, M.G. Increases in ozone-related mortality in China over 2013–2030 attributed to historical ozone deterioration and future population aging. Science of the Total Environment https://doi.org/10.1016/j.scitotenv.2022.159972 [PDF]
2022 (8)
[37] Zhang, J.*, Wang, J.F.*, Sun, Y.L., Li, J.Y., Ninneman, M., Ye, J.H., Li, K., Crandall, B., Mao, J.B., Xu, W.Q., Schwab, M., Li, W.J., Ge, X.L., Chen, M.D., Ying, Q., Zhang, Q., and Schwab, J.* Insights from ozone and particulate matter pollution control in New York City applied to Beijing. npj Climate and Atmospheric Science https://doi.org/10.1038/s41612-022-00309-8 [PDF]
[36] Lyu, X.P., Guo, H.*, Zou, Q.L., Li, K., Xiong, E.Y., Zhou, B.N., Guo, P.W., Jiang, F., and Tian, X.D.*. Evidence for reducing volatile organic compounds to improve air quality from concurrent observations and in situ simulations at 10 stations in eastern China. Environmental Science & Technology https://doi.org/10.1021/acs.est.2c04340 [PDF]
[35] Wang, H., Lu, X.*, Jacob, D.J., Cooper, O.R., Chang, K.L., Li, K., Gao, M., Liu, Y., Sheng, B., Wu, K., Wu, T., Zhang, J., Sauvage, B., Nédélec, P., Blot R., and Fan, S.J.*. Global tropospheric ozone trends, attributions, and radiative impacts in 1995–2017: an integrated analysis using aircraft (IAGOS) observations, ozonesonde, and multi-decadal chemical model simulations. Atmospheric Chemistry and Physics https://doi.org/10.5194/acp-22-13753-2022 [PDF]
[34] Zhou Y., Yang, Y.*, Wang, H.L., Wang, J., Li, M.Y., Li, H.M., Wang, P.Y., Zhu, J., Li, K., and Liao, H. Summer ozone pollution in China affected by the intensity of Asian monsoon systems. Science of the Total Environment https://doi.org/10.1016/j.scitotenv.2022.157785 [PDF]
[33] Qian J.,Liao, H.*, Yang, Y., Li, K., Chen, L., and Zhu, J. Meteorological influences on daily variation and trend of summertime surface ozone over years of 2015–2020: Quantification for cities in the Yangtze River Delta. Science of the Total Environment https://doi.org/10.1016/j.scitotenv.2022.155107 [PDF]
[32] Li, J.D., Hao, X., Liao, H.*, Wang, Y.H., Cai, W.J., Li, K., Yue, X., Yang, Y., Chen, H.S., Mao, Y.H., Fu, Y., Chen, L. and Zhu, J. Winter particulate pollution severity in North China driven by atmospheric teleconnections. Nature Geoscience https://doi.org/10.1038/s41561-022-00933-2 [PDF]
[31] Yang, Y.*, Li, M.Y., Wang, H.L., Li, H.M., Wang, P.Y., Li, K., Gao, M., and Liao, H. ENSO modulation of summertime tropospheric ozone over China. Environmental Research Letters https://doi.org/10.1088/1748-9326/ac54cd [PDF]
[30] Wei, J.*, Li, Z.Q.*, Li, K., Dickerson, R.R., Pinker, R.T., Wang, J., Liu, X., Sun, L., Xue, W.H. and Cribb, M. Full-coverage mapping and spatiotemporal variations of ground-level ozone (O3) pollution from 2013 to 2020 across China. Remote Sensing of Environment https://doi.org/10.1016/j.rse.2021.112775 [PDF]
2021 (11)
[29] Ma, R.#, Li, K.#, Guo, Y.X., Zhang, B.*, Zhao, X.L., Linder, S., Guan, C.H., Chen, G.Q., Gan, Y.J. and Meng, J.* (2021). Mitigation potential of global ammonia emissions and related health impacts in the trade network. Nature Communications https://doi.org/10.1038/s41467-021-25854-3 [PDF]
[28] Li, K., Jacob, D. J.*, Liao, H.*, Qiu, Y.L., Shen, L., Zhai, S.X., Bates, K. H., Sulprizio, M. P., Song, S.J., Lu, X., Zhang, Q., Zheng, B., Zhang, Y.L., Zhang, J.Q., Lee, H.C. and Kuk, S.K. (2021). Ozone pollution in the North China Plain spreading into the late-winter haze season. Proceedings of the National Academy of Sciences https://doi.org/10.1073/pnas.2015797118 [PDF]
[27] Gao, J.L., Guan, C.H., Zhang, B.*, and Li, K.* (2021) Decreasing methane emissions from China's coal mining with rebounded coal production, Environmental Research Letters https://doi.org/10.1088/1748-9326/ac38d8 [PDF]
[26] Yin, H., Lu, X.*, Sun, Y.W.*, Li, K., Gao, M., Zheng, Bo., and Liu, C. Unprecedented decline in summertime surface ozone over eastern China in 2020 comparably attributable to anthropogenic emission reductions and meteorology, Environmental Research Letters https://doi.org/10.1088/1748-9326/ac3e22 [PDF]
[25] Bates, K.*, Jacob, D., Li, K., Ivatt, P., Evans, M., Yan, Y., and Lin, J. Development and evaluation of a new compact mechanism for aromatic oxidation in atmospheric models, Atmospheric Chemistry and Physics https://doi.org/10.5194/acp-21-18351-2021 [PDF]
[24] Qiu, Y., Ma, Z.*, Li, K., Huang, M., Sheng, J., Tian, P., Zhu, J., Pu, W., Tang, Y., Han, T., Zhou, H., and Liao, H. Measurement report: Fast photochemical production of peroxyacetyl nitrate (PAN) over the rural North China Plain during haze events in autumn, Atmospheric Chemistry and Physics https://doi.org/10.5194/acp-21-17995-2021 [PDF]
[23] Yang, Y.*, Zhou, Y., Li, K., Wang, H.L., Ren, L.L., Zeng, L.Y., Li, H.M., Wang, P.Y., Li, B.J., Liao, H. (2021). Atmospheric circulation patterns conducive to severe haze in eastern China have shifted under climate change, Geophysical Research Letters https://doi.org/10.1029/2021GL095011 [PDF]
[22] Zhai, S.*, Jacob, D. J., Brewer, J. F., Li, K., Moch, J. M., Kim, J., Lee, S., Lim, H., Lee, H. C., Kuk, S. K., Park, R. J., Jeong, J. I., Wang, X., Liu, P., Luo, G., Yu, F., Meng, J., Martin, R. V., Travis, K. R., Hair, J. W., Anderson, B. E., Dibb, J. E., Jimenez, J. L., Campuzano-Jost, P., Nault, B. A., Woo, J.-H., Kim, Y., Zhang, Q., and Liao, H. (2021). Interpretation of geostationary satellite aerosol optical depth (AOD) over East Asia in relation to fine particulate matter (PM2.5): insights from the KORUS-AQ aircraft campaign and seasonality, Atmospheric Chemistry and Physics https://doi.org/10.5194/acp-21-16775-2021 [PDF]
[21] Lu, X., Ye, X., Zhou, M., Zhao, Y., Weng, H., Kong, H., Li, K., Gao, M., Zheng, B., Lin, J., Zhou, F., Zhang, Q., Wu, D., Zhang, L.* and Zhang Y.H.* (2021). The underappreciated role of agricultural soil nitrogen oxide emissions in ozone pollution regulation in North China. Nature Communications https://doi.org/10.1038/s41467-021-25147-9 [PDF]
[20] Zhai, S.X., Jacob, D.J.*, Wang, X., Liu, Z.R., Wen, T.X., Shah, V., Li, K., Moch, J., Bates, K.H., Song, S.J., Shen, L., Zhang, Y.Z., Luo, G., Yu, F.Q., Sun, Y.L., Wang, L.T., Qi, M.Y., Tao, J., Gui, K., Xu, H.H., Zhang, Q., Zhao, T.L., Wang, Y.S., Lee, H.C., Choi, H. and Liao, H. (2021). Control of particulate nitrate air pollution in China. Nature Geoscience https://doi.org/10.1038/s41561-021-00726-z [PDF]
[19] Song, S.J.*, Ma, T., Zhang, Y., Shen, L., Liu, P., Li, K., Zhai, S., Zheng, H., Gao, M., Duan, F., He, K., and McElroy, M. B. (2021). Global modeling of heterogeneous hydroxymethanesulfonate chemistry. Atmospheric Chemistry and Physics https://doi.org/10.5194/acp-21-457-2021 [PDF]
2020 (5)
[18] Li, K.*, Jacob, D.J., Shen, L., Lu, X., De Smedt, I. and Liao, H. (2020). Increases in surface ozone pollution in China from 2013 to 2019: anthropogenic and meteorological influences. Atmospheric Chemistry and Physics https://doi.org/10.5194/acp-2020-298 [PDF]
[17] Qiu, Y.L., Ma, Z.Q.*, Li, K.*, Lin, W.L., Tang, Y.X., Dong, F. and Liao, H. (2020). Markedly enhanced levels of peroxyacetyl nitrate (PAN) during COVID-19 in Beijing. Geophysical Research Letters https://doi.org/10.1029/2020GL089623 [PDF]
[16] Lu, X., Zhang, L.*, Wang, X.L., Gao, M., Li, K., Zhang, Y.Z., Yue, X. and Zhang, Y.H.* (2020). Rapid increases in warm-season surface ozone and resulting health impact over China since 2013. Environmental Science & Technology Letters https://doi.org/10.1021/acs.estlett.0c00171 [PDF]
[15] Shah, V.*, Jacob, D.J., Li, K., Silvern, R.F., Zhai, S.X., Liu, M.Y., Lin, J.T. and Zhang, Q. (2020). Effect of changing NOx lifetime on the seasonality and long-term trends of satellite-observed tropospheric NO2 columns over China. Atmospheric Chemistry and Physics https://doi.org/10.5194/acp-20-1483-2020 [PDF]
[14] Gu, Y.X.*, Li, K., Xu, J.M.*, Liao, H. and Zhou, G.Q. (2020). Observed dependence of surface ozone on increasing temperature in Shanghai, China. Atmospheric Environment https://doi.org/10.1016/j.atmosenv.2019.117108 [PDF]
2019 (8)
[13] Li, K., Jacob, D.J.*, Liao, H.*, Zhu, J., Shah, V., Shen, L., Bates, K.H., Zhang, Q. and Zhai, S.X. (2019). A two-pollutant strategy for improving ozone and particulate air quality in China. Nature Geoscience https://doi.org/10.1038/s41561-019-0464-x [PDF]
[12] Li, K., Jacob, D.J.*, Liao, H.*, Shen, L., Zhang, Q. and Bates, K.H. (2019). Anthropogenic drivers of 2013-2017 trends in summer surface ozone in China. Proceedings of the National Academy of Sciences https://doi.org/10.1073/pnas.1812168116 [PDF]
[11] Zhai, S.X.*, Jacob, D.J., Wang, X., Shen, L., Li, K., Zhang, Y. Z., Gui, K., Zhao, T. L. and Liao, H. (2019). Fine particulate matter (PM2.5) trends in China, 2013–2018: separating contributions from anthropogenic emissions and meteorology. Atmospheric Chemistry and Physics https://doi.org/10.5194/acp-19-11031-2019 [PDF]
[10] Lu, X.*, Zhang, L.*, Chen, Y.F., Zhou, M., Zheng, B., Li, K., Liu, Y.M., Lin, J.T., Fu, T.M. and Zhang, Q. (2019). Exploring 2016-2017 surface ozone pollution over China: source contributions and meteorological influences. Atmospheric Chemistry and Physics https://doi.org/10.5194/acp-19-8339-2019 [PDF]
[9] Shen. L.*, Jacob, D.J., Liu, X., Huang, G., Li, K., Liao, H., and Wang, T. (2019). An evaluation of the ability of the Ozone Monitoring Instrument (OMI) to observe boundary layer ozone pollution across China: application to 2005–2017 ozone trends. Atmospheric Chemistry and Physics https://doi.org/10.5194/acp-19-6551-2019 [PDF]
[8] Shen, L.*, Jacob, D.J., Zhu, L., Zhang, Q., Zheng, B., Sulprizio, M.P., Li, K., De Smedt, I., Gonzalo Abad, G., Cao, H., Fu, T.-M. and Liao, H. (2019). 2005-2016 trends of formaldehyde columns over China observed by satellites: increasing anthropogenic emissions of volatile organic compounds and decreasing agricultural fire emissions. Geophysical Research Letters https://doi.org/10.1029/2019GL082172 [PDF]
[7] Qiu, Y.L., Lin, W.L., Li, K., Chen, L., Yao, Q., Tang, Y.X. and Ma, Z.Q.* (2019). Vertical characteristics of peroxyacetyl nitrate (PAN) from a 250m tower in northern China during September 2018. Atmospheric Environment https://doi.org/10.1016/j.atmosenv.2019.05.066 [PDF]
[6] Qiu, Y.L. Ma, Z.Q.* and Li, K. (2019). A modeling study of the peroxyacetyl nitrate (PAN) during a wintertime haze event in Beijing, China. Science of the Total Environment https://doi.org/10.1016/j.scitotenv.2018.09.253 [PDF]
2018 (2)
[5] Li, K., Liao, H.*, Cai, W.J. and Yang, Y. (2018). Attribution of anthropogenic influence on atmospheric patterns conducive to recent most severe haze over eastern China. Geophysical Research Letters https://doi.org/10.1002/2017GL076570 [PDF]
[4] Zhang, Y., Liao, H.*, Ding, X., Jo, D. and Li, K. (2018). Implications of RCP emissions on future concentration and direct radiative forcing of secondary organic aerosol over China. Science of the Total Environment https://doi.org/10.1016/j.scitotenv.2018.05.274 [PDF]
2017 and before (3)
[3] Cai, W.J., Li, K., Liao, H.*, Wang, H.J. and Wu, L.X. (2017) Weather conditions conducive to Beijing severe haze more frequent under climate change. Nature Climate Change https://doi.org/10.1038/nclimate3249 [PDF] (Highlighted by Journal cover, News & Views)
[2] Li, K., Liao, H.*, Zhu, J. and Moch. J. (2016). Implications of RCP emissions on future PM2.5 air quality and direct radiative forcing over China. Journal of Geophysical Research https://doi.org/10.1002/2016JD025623 [PDF]
[1] Li, K., Liao, H.*, Mao, Y.H. and Ridley, D.A. (2016). Source sector and region contributions to concentration and direct radiative forcing of black carbon in China, Atmospheric Environment https://doi.org/10.1016/j.atmosenv.2015.06.014 [PDF]
中文期刊 (5)
[5] 杨镇江,李柯*,廖宏,陈磊, 2022年夏季历史极端高温下我国近地表臭氧污染及气象成因分析,大气科学, In press.[PDF]
[4] 候杰,李柯*,张丹瑜婷, 2015-2022年我国华北地区冬季PM2.5-O3复合污染及特征分析,环境科学研究, doi: 10.13198/j.issn.1001-6929.2023.01.12 [PDF]
[3] 杜楠,陈磊,廖宏,朱佳,李柯, 夏季对流层臭氧辐射强迫对华北地区天气和空气质量的影响,环境科学, In press.
[2] 张华,杨镇江,苏红娟,张丹瑜婷,安琪,袁畅,李帅,何静怡,谢冰,赵树云,李柯*, 短寿命气候强迫因子的自然源排放及气候反馈,大气科学学报 doi: 10.13878/j.cnki.dqkxxb.20220921001 [PDF]
[1] 张丹瑜婷,廖宏*,李柯,代慧斌. “大气污染防治行动计划”执行以来我国夏季大气OH浓度变化的数值模拟. 大气科学 doi.org/10.3878/j.issn.1006-9895.2112.21218. [PDF]
- 研究方向
- 社会兼职
- 大气污染与气候变化
- 教育经历
- 工作经历
暂无内容
团队成员
李柯
个人信息
- 教师姓名: 李柯
- 所在单位: 环境科学与工程学院
- 办公地点:学科1号楼C304
- 联系方式: keli@nuist.edu.cn
- 学历: 博士研究生毕业
- 学位:理学博士学位
- 在职信息: 在岗
- 职称: 教授
- 毕业院校:中国科学院大学