Coexisting Infinite Equilibria and Chaos
点击次数:发表时间:2023-03-13
- 发表刊物:International Journal of Bifurcation and Chaos
- 摘要:Equilibria are a class of attractors that host inherent stability in a dynamic system. Infinite number of equilibria and chaos sometimes coexist in a system with some connections. Hidden chaotic attractors exist independent of any equilibria rather than being excited by them. However, the equilibria can modify, distort, eliminate, or even instead coexist with the chaotic attractor depending on the distance between the equilibria and chaotic attractor. In this paper, chaotic systems with infinitely many equilibria are considered and explored. Extra surfaces of equilibria are introduced into the chaotic flows, showing that a chaotic system can maintain its basic dynamics if the newly added equilibria do not intersect the original attractor. The offsetboostable plane of equilibria rescales the frequency of the chaotic oscillation with an almost linearly modified largest Lyapunov exponent or conversely drives the system into periodic oscillation, even ending in a divergent state. Furthermore, additional infinite number of equilibria or even a solid space of equilibria are safely nested into the chaotic system without destroying the original dynamics, which provides an alternate permanent location for a dynamical system. A circuit simulation agrees with the numerical calculation.
- 全部作者:彭宇轩,陶泽,Julien Clinton Sprott,Sajad Jafari
- 第一作者:李春彪
- 论文编号:2130014
- 卷号:31
- 期号:5
- 是否译文:否
- 收录刊物:SCI
- 发表时间:2021-01-04
+
论文成果
个人信息
- 性别:男
- 职称:教授
- 所在单位:人工智能学院(未来技术学院、人工智能产业学院)
曾获荣誉:
- 2023-12-01 曾获荣誉当选: 江苏省工程师学会科学技术奖 提名奖
- 2023-01-02 曾获荣誉当选: 2022年江苏省通信学会科学技术奖一等奖
- 2018-08-01 曾获荣誉当选: 2018年 江苏省教育教学与研究成果奖(研究类)三等奖(高校自然科学研究类)
- 2018 曾获荣誉当选: 江苏省教育教学与研究成果奖(研究类)三等奖
- 2015 曾获荣誉当选: 领跑者5000
- 2013 曾获荣誉当选: 第八届春晖杯大赛优胜奖
- 2014 曾获荣誉当选: 国家级教学成果奖
- 2011 曾获荣誉当选: 省级教学成果奖
其他联系方式
- 邮编:
- 通讯/办公地址:
- 办公室电话:
- 移动电话:
- 邮箱:


