孙博教授主页
孙博
510

个人信息Personal Information

教授 博士生导师 硕士生导师

教师拼音名称:sunbo

所在单位:大气科学学院

性别:男

联系方式:sunb@nuist.edu.cn

职称:教授

博士生导师

硕士生导师

学科:气象学

其他联系方式Other Contact Information

邮箱 : sunb@nuist.edu.cn

  • 基本信息
  • 个人简介
  • 近期主要论著
  • 近期科研项目
  • 姓       名:  孙博

    出生年月: 1987年12月

    国       籍:  中国

    性       别:  男

    职       称:  教授(博导,硕导)

    职       务:  气候系系主任

    最高学历:  博士

    所属专业:  大气科学

    所属系部:  气候学系

    毕业院校:  中科院大气物理研究所

    研究方向:  气候变化

    办公地点:  气象楼505

    邮       箱:  sunb@nuist.edu.cn

    主讲课程:  雷丁:Weather and Climate Fundamentals (天气和气候学概论)

                     本科:现代气候学,全球气候变化及应对,中国天气

                     研究生:英文科技写作

                     留学生:短期气候预测及实践(硕士留学生),Advances in Atmospheric Sciences(博士留学生)

    主要研究领域:  大气水分循环,短期气候预测,极端气候变异,全球气候变化及影响


    极地-热带相互作用与东亚极端气候:                       
     1. 揭示梅雨对气候变化的响应和物理机制:  分析了全球变暖背景下梅雨变异的物理机制,阐明了梅雨对气候变化的响应,揭示了梅雨极端性和不稳定性增强的原因
    (Sun et al., 2015, CD; Sun et al., 2018,JC; Sun et al., 2019, GRL, JC, CD; Sun et al., 2021, JC; Sun et al., 2023, IJOC; Li, Sun* et al., 2022, AOSL; Sun et al., 2023, NSR)。
     2. 追踪东亚水汽源地:  利用拉格朗日轨迹追踪模式(FLEXPART)系统地研究了中国不同区域强降水的水汽输送路径和源地,提出了“面源水汽贡献归因”方法,量化了来自太平洋、印度洋及亚欧大陆的水汽对中国不同区域强降水的贡献
    (Sun and Wang, 2014, JC; Sun and Wang, 2015, IJOC)
    3. 揭示极地-热带系统对东亚极端降雪的协同影响机制:  系统分析了极地、热带气候系统调控并触发极端降雪的过程及机理
    (Sun and Wang, 2013, JC; Sun et al., 2019, JGR; Sun et al., 2019, 2022, JGR; Sun et al., 2019, JC; Sun et al., 2021, JC; 孙博等, 2020, 水科学进展; 张胜龙和孙博*等, 2023, 大气科学)。
    4. 量化人类活动对复合极端气候的贡献:  揭示了人为温室气体强迫对中国区域极端高温干旱/多雨事件严重程度的增加趋势的贡献超过90%
    (Li, Sun* et al., 2023, npj CAS),揭示了海温和积雪等气候系统内部因素通过罗斯贝波、沃克环流、哈得来环流等调控中国东部极端高温频次年际/年代际变化的多圈层相互作用过程和机制(Sun and Wang, 2017, AAS; Sun, 2018, AAS; Zhu, Sun* et al., 2020, IJOC; Zhu, Sun* et al., 2022, JC)。
                                                                                                                                                                                                               



  • 教育背景:  

    2006-2010:兰州大学大气科学学院(获得学士学位)
    2010-2015:中国科学院大气物理研究所(获得博士学位)

    工作经历:  

    2015-2017:美国夏威夷大学博士后
    2017-2020:南京信息工程大学 大气科学学院 讲师(校聘教授)
    2020至今:南京信息工程大学 大气科学学院 教授

    荣誉获奖:  

    2024:江苏省科技期刊优秀论文奖(第一作者)
    2024:Atmospheric and Oceanic Science Letters 年度优秀论文(通讯作者)
    2024:南京信息工程大学  第二届“十大青年科技之星”
    2022:南京信息工程大学 本科毕业论文优秀指导教师
    2022:江苏省333高层次人才培养工程(第三层次)
    2021:南京信息工程大学 大气科学学院 优秀青年人才
    2021:江苏省科协青年科技人才托举工程
    2021:南京信息工程大学 青年五四奖章
    2021:南京信息工程大学 大气科学学院 专业建设突出贡献奖
    2020:南京信息工程大学 大气科学学院 年终考核优秀
    2020:南京信息工程大学 大气科学学院 优秀青年人才
    2019:南京信息工程大学 大气科学学院 年终考核优秀
    2019:南京信息工程大学 2018-2019年度优秀班主任(17级气科4班)
    2019:南京信息工程大学 2017-2018年度工会积极分子
    2018:南京信息工程大学 大气科学学院 年终考核优秀
    2018:南京信息工程大学 2017-2018年度优秀班主任(17级气科4班)
    2016:中国科学院 优秀博士学位论文
    2015:中国科学院 大气物理研究所 优秀博士学位论文
    2015:北京市 优秀毕业生 
    2015:中国科学院大学 优秀毕业生
    2015:中国科学院 院长特别奖
    2014:中国科学院 朱李月华优秀博士生奖
    2014:教育部 博士研究生 国家奖学金
    2013:教育部 博士研究生 国家奖学金
    2008:教育部 国家奖学金

  • 蓝色为第一作者/通讯作者发表文章。#为学生一作,*为通讯作者

    ResearchGate 主页:https://www.researchgate.net/profile/Bo-Sun-73

    论文:

    (75) Zheng, Y., Sun B.*, Li W. L., Zhou S. Y., Cai J. R., Li H. X., and He S. P., 2025: Attribution of regional Hadley circulation intensity changes in the Northern Hemisphere. Atmospheric and Oceanic Science Letters, 100613, https://doi.org/10.1016/j.aosl.2025.100613.
    (74) Xu, X., He S., Zhou B., Wang H., Jiang H., Liu C., Sun B., Yin T., and Yan J., 2025: South European heatwaves and their impacts on the power system in 2022. Journal of Geophysical Research: Atmospheres, 130, e2024JD042310.
    (73) Li, H.X., Sun B., Zhang Z. S., Wang H. J.*, Zhou Y. R., Zeng J. N., Zhou B. T., 2024: Compound hot drought events in the Mei-yu region: Influences from polar and tropical regions, Science Bulletin, https://doi.org/10.1016/j.scib.2024.09.043.
    (72) Sun, B., W. L. Li, H. J. Wang, R. F. Xue, S. Y. Zhou, Y. Zheng, J. R. Cai, W. C. Tang, Y. L. Dai, and Y. T. Huang, 2024: Performance Evaluation of CMIP6 Models in Simulating the Dynamic Processes of Arctic-Tropical Climate Connection During Winter. Journal of Geophysical Research: Atmospheres, 129, e2024JD041328, https://doi.org/10.1029/2024JD041328. 揭示CMIP对冬季极地-热带气候系统动力过程的模拟能力,IF=3.8,TOP
    (71) Xu, X., He S., Zhou B., and Sun B., 2024: CMIP6 near-term and long-term projections of Eurasian winter cooling trend and cold extremes. Environmental Research Letters, 19, 104038.
    (70) Cai, J. R.#, B. Sun*, H. J. Wang, Y. Zheng, S. Y. Zhou, H. X. Li, Y. Y. Huang, and P. S. Zong, 2024: Application of the improved dung beetle optimizer, muti-head attention and hybrid deep learning algorithms to groundwater depth prediction in the Ningxia area, China. Atmospheric and Oceanic Science Letters, 100497, https://doi.org/10.1016/j.aosl.2024.100497. (利用机器学习对地下水预测)
    (69) Y. Li, C. H. Wang, Q. H. Tang, S. B. Yao, B. Sun, H. Peng, and S. B. Xiao, 2024: Unraveling the discrepancies between Eulerian and Lagrangian moisture tracking models in monsoon- and westerly-dominated basins of the Tibetan Plateau. Atmospheric Chemistry and Physics, 24, 10741-10758, https://doi.org/10.5194/acp-24-10741-2024.
    (68) 郑帅#,孙博*,李万玲,薛茹帆,2024:CMIP6对中国东部夏季降水年代际变化的模拟能力评估. 高原气象,https://link.cnki.net/urlid/62.1061.P.20240708.1200.006.
    (67) 郑帅#,孙博*,邱振鹏,吴文星,2024: 全球变暖背景下北极海冰与东亚冬季风关系的变化及其机制. 气象科学, 44, 199-209, https://link.cnki.net/urlid/32.1243.P.20240516.1627.002.
    (66) Zhou, B. T., Z. Y. Song, Z. C. Yin, X. P. Xu, B. Sun, P. C. Xu, and H. S. Chen, 2024: Recent autumn sea ice loss in the eastern Arctic enhanced by summer Asian-Pacific Oscillation. Nature Communications, 15, 2798, https://doi.org/10.1038/s41467-024-47051-8.
    (65) Zhou, S. Y.#, B. Sun*, H. J. Wang, Y. Zheng, J. R. Cai, H. X. Li, and B. T. Zhou, 2024: Distinct interannual variability and physical mechanisms of snowfall frequency  over the Eurasian continent during autumn and winter. Adv. Atmos. Sci., 41, 1-15, https://doi.org/10.1007/s00376-024-3327-3.(揭示欧亚大陆积雪变异机理,IF=6.5)
    (64) Xue, R. F.#, B. Sun*, et al., 2024: Future projections of meteorological, agricultural and hydrological droughts in China using the emergent constraint. Journal of Hydrology: Regional Studies, 53, 101767, https://doi.org/10.1016/j.ejrh.2024.101767. (利用归因约束预估未来气象、水文干旱等,IF=4.7)
    (63) Zhang, D. P., Y. Y. Huang, B. T. Zhou, H. J. Wang, and B. Sun, 2024: Who is the major player for 2022 China extreme heat wave? Western Pacific Subtropical high or South Asian high? Weather and Climate Extremes, 43, 100640, https://doi.org/10.1016/j.wace.2024.100640.
    (62) Xue, R. F.#, B. Sun*, W. L. Li, H. X. Li, and B. T. Zhou, 2024: Future changes in compound drought events and associated population and GDP exposure in China based on CMIP6. Atmospheric and Oceanic Science Letters, 17, 100461, https://doi.org/10.1016/j.aosl.2024.100461.
    (61) Sun, B., H. Li, B. Zhu, R. Xue, and W. Li, 2023: Sources of the predictability of month-to-month variation of precipitation anomalies in East Asia during summer. International Journal of Climatology, 43, 7274-7291, https://doi.org/10.1002/joc.8264. (揭示东亚夏季降水逐月的可预报性来源,IF=3.5)
    (60) Li, H. X., B. Sun*, H. J. Wang, B. T. Zhou, and X. X. Ma, 2023: Characteristics and mechanisms of the severe compound cold-wet event in southern China during February 2022. Environ. Res. Lett., 18, 114021, https://doi.org/10.1088/1748-9326/ad0163.(揭示华南夏季冷湿事件的机理,IF=5.8)
    (59) Xu, X. P., S. P. He, B. T. Zhou, H. J. Wang, and B. Sun, 2023: Arctic Warming and Eurasian Cooling: Weakening and Reemergence. Geophys. Res. Lett., 50, e2023GL105180, https://doi.org/10.1029/2023GL105180.
    (58) Zhou, B. T., J. Qian, Y. P. Hu, H. Li, T. T. Han, and B. Sun, 2023: Interdecadal change in the linkage of early summer sea ice in the Barents Sea to the variability of West China Autumn Rain. Atmospheric Research, 287, 106717, https://doi.org/10.1016/j.atmosres.2023.106717.
    (57) Sun, B., R. Xue, W. Li, S. Zhou, H. Li, B. Zhou, and H. Wang, 2023: How does Mei-yu precipitation respond to climate change? National Science Review, 10, nwad246, https://doi.org/10.1093/nsr/nwad246. (揭示梅雨对气候变化的响应,IF=16.5,TOP)
    (56) Li, W., B. Sun*, H. J. Wang, B. T. Zhou, H. X. Li, R. F. Xue, M. K. Duan, X. C. Luo, and W. W. Ai, 2023: Anthropogenic impact on the severity of compound extreme high temperature and drought/rain events in China. npj Clim. Atmos. Sci.,  6, 79, https://doi.org/10.1038/s41612-023-00413-3.(揭示人类活动对复合极端事件的影响,IF=8.8)
    (55) Cui, X. Y., B. Y. Zhu, and B. Sun*, 2023: Influence of three types of boreal summer intraseasonal oscillation on summer precipitation over the Yangtze River Valley. Atmos. Oceanic Sci. Lett., 16, 100394, https://doi.org/10.1016/j.aosl.2023.100394. (揭示夏季不同季节内振荡对长江流域降水的影响机理)
    (54) Sun, B., L. Zhang, S. F. Chen, and S. Outten, 2023: Editorial: Extreme climate events: variability, mechanisms, and numerical simulations. Front. Earth Sci., 11, 1159605, https://doi.org/10.3389/feart.2023.1159605.
    (53) 张胜龙, 孙博*, 陈平, 2023: 冬季12月和2月热带太平洋海温与东亚水汽输送关系的年代际变化机制研究. 大气科学, 47, 975-994, doi:  10.3878/j.issn.1006-9895.2202.21129.
    (52) 王腾, 孙博*, 王会军, 多典洛珠, 卓永, 2023: 三江源地区冬季降水年代际变化特征及相关物理机制. 大气科学, 47, 1863-1875, doi: 10.3878/j.issn.1006-9895.2204.22034.
    (51) 孙博, 王会军, 黄艳艳, 尹志聪, 周波涛, 段明铿, 2023:  2022 年夏季中国高温干旱气候特征及成因探讨. 大气科学学报, 46(1), 1-8, doi: 10. 13878 /j.cnki.dqkxxb.20220916003.
    (50) Zhu, B. Y., H. X. Li, B. Sun, B. T. Zhou, and M. K. Duan, 2022: Physical–empirical prediction model for the dominant mode of extreme high temperature events in eastern China during summer. Front. Earth Sci., https://doi.org/10.3389/feart.2022.989073.
    (49) Li, H. X., B. Sun*, H. J. Wang, B. T. Zhou, and M. K. Duan, 2022: Mechanisms and physical-empirical prediction model of concurrent heatwaves and droughts in July–August over northeastern China.  J. Hydrol., 614, 128535. (揭示东北复合高温干旱的机理并构建统计-动力预测模型,IF=5.9)
    (48) Chen, P., B. Sun*, H. J. Wang, and L. M. Yang, 2022: Improving the CFSv2 prediction of the Indian Ocean Dipole based on a physical-empirical model and a deep-learning approach. Int. J. Climatol., https://doi.org/10.1002/joc.7812. (利用机器学习提升印度洋偶极子型的预测能力,IF=3.5)
    (47) He, W. Y., B. Sun*, J. H. Ma, and H. J. Wang, 2022: Interdecadal variation in atmospheric water vapour content over East Asia during winter and the relationship with autumn Arctic sea ice. Int. J. Climatol., https://doi.org/10.1002/joc.7779. (揭示东亚冬季大气水汽含量与秋季北极海冰联系的年代际变异机理,IF=3.5)
    (46) Sun, B.*, H. Wang, H. Li, B. Zhou, M. Duan, and H. Li, 2022: A long-lasting precipitation deficit in South China during autumn-winter 2020/21: combined effect of ENSO and Arctic sea ice. J. Geophys. Res.-Atmospheres, e2021JD035584, https://doi.org/10.1029/2021JD035584. (揭示ENSO和北极海冰对2020/21年华南连旱的协同影响机理,IF=3.8)
    (45) Zhu, B., B. Sun*, and H. Wang , 2022: Increased interannual variability in the dipole mode of extreme high-temperature events over East China during summer after the early 1990s and associated mechanisms. J. Climate, 35(4), 1347–1364, https://doi.org/10.1175/JCLI-D-21-0431.1(揭示东亚夏季极端温度偶极子型的年代际变异机理,IF=4.8)
    (44) Zhou, B., J. Qian, J. Zhou, T. Han, and B. Sun, 2022: Strengthening of the relationship between West China Autumn Rain and arctic oscillation in the mid-1980s. Atmos. Res., 265, 105916, https://doi.org/10.1016/j.atmosres.2021.105916.
    (43) Li, H., B. Sun*, H. Wang, and X. Yuan, 2022: Joint effects of three oceans on the 2020 super mei‐yu. Atmos. Oceanic Sci. Lett., 100127, https://doi.org/10.1016/j.aosl.2021.100127.(揭示三大洋协同作用对2020年超级梅雨的影响)
    (
    42) Wang, H., Y. Dai, S. Yang, T. Li, J. Luo, B. Sun, M. Duan, J. Ma, Z. Yin, and Y.  Huang, 2022: Predicting climate anomalies: a real challenge. Atmos. Oceanic Sci. Lett., 100115, https://doi.org/10.1016/j.aosl.2021.100115.
    (41) Zhou, B. T., Z. Y. Wang, B. Sun, and X. Hao, 2021: Decadal Change of Heavy Snowfall over Northern China in the Mid-1990s and Associated Background Circulations. J. Climate, 34, 825–837, https://doi.org/10.1175/JCLI-D-19-0815.1.
    (40) Sun, B., H. Wang, B. Wu, M. Xu, B. Zhou, H. Li, and T. Wang, 2021: Dynamic control of the dominant modes of interannual variability of snowfall frequency in China. J. Climate, 34(7), 2777–2790, https://doi.org/10.1175/JCLI-D-20-0705.1. (揭示中国降雪频次年际变异机理,IF=4.8)
    (39) Sun, B., H. Wang, A. Wang, Y. Miao, B. Zhou, and H. Li, 2021: Regularity and irregularity of the seasonal northward march of the East Asian summer wet environment and the influential factors. J. Climate, 34(2), 545–566. https://doi.org/10.1175/JCLI-D-20-0333.1.(揭示东亚雨带季节性北移的主导因素,IF=4.8)
    (38) Chen, P., B. Sun*, H. Wang, and B. Zhu, 2021: Possible impacts of December Laptev sea ice on Indian Ocean Dipole conditions during spring. J. Climate, 34(16), 6927–6943, https://doi.org/10.1175/JCLI-D-20-0980.1.(揭示拉普捷夫海海冰对春季印度洋海温偶极子型的影响机理,IF=4.8)
    (37) Wang, T., B. Sun*, and H. Wang, 2021: Interannual variations of monthly precipitation and associated mechanisms over the Three River Source region in China in winter months. Int. J. Climatol., 41(4), 2209–2225, https://doi.org/10.1002/joc.6954.(揭示三江源冬季降水的年际变异机理,IF=3.5)
    (36) He, W., B. Sun*, and H. Wang, 2021: Dominant Modes of Interannual Variability in Atmospheric Water Vapor Content over East Asia during Winter and Their Associated Mechanisms. Adv. Atmos. Sci., 38(10), 1706–1722, https://doi.org/10.1007/s00376-021-0014-5.(揭示冬季东亚大气水含量的年际变异及其机理,IF=6.5)
    (35) Xu, W., Q. Song, Y. Li, C. Shi, B. Sun, Y. Su, Z. Tang, Y. Du, and D. Guo, 2021: Effects of Stationary and Transient Transport of Ozone on the Ozone Valley Over the Tibetan Plateau in Summer. Front. Earth Sci., 9, 121, https://doi.org/10.3389/feart.2021.608018.
    (34) 李惠心, 孙博*, 周波涛, 王树舟, 朱宝艳, 范怡, 2021: 3月巴伦支海海冰对中国东部8月气温偶极子型的影响及机制研究. 大气科学学报, 44(1), 89–103, https://doi.org/10.13878/j.cnki.dqkxxb.20201013001.
    (33) Zhou, B., M. Xu, B. Sun, T. Han, and Z. Cheng, 2021: Possible role of Southern Hemispheric sea ice in the variability of West China autumn rain. Atmospheric Research, 249, 105329,  https://doi.org/10.1016/j.atmosres.2020.105329.
    (32) Masa, Kageyama, L. C. Sime, M. Sicard, M. V. Guarino, A. D. Vernal,  R. Stein, D. Schroeder, I. M. Vallet, A. A. Ouchi, C. Bitz, P. Braconnot, E. Brady, J. Cao, M. A. Chamberlain, D. Feltham, C. Guo, A. N. LeGrande, G. Lohmann, K. Meissner, L. Menviel, P. Morozova, K. H. Nisancioglu, B. O. Bliesner, R. O’ishi,  S. R. Buarque, D. S. Melia, S. S. Tadano, J. Stroeve, X. Shi, B. Sun,  R. A. Tomas, E. Volodin, N. Yeung, Q. Zhang, Z. Zhang, W. Zheng, and T. Ziehn, 2021:A multi-model CMIP6-PMIP4 study of Arctic sea ice at 127 ka: Sea ice data compilation and model differences. Climate Past, 17(1), 37–62, https://doi.org/10.5194/cp-17-37-2021.
    (31) Li, H., H. Chen, B. Sun, and H. Wang, 2020: A detectable anthropogenic shift toward intensified summer hot drought events over northeastern China. Earth Space Sci., 7(1), e2019EA000836, https://doi.org/10.1029/2019EA000836.
    (30) Chen, P., and B. Sun*, 2020: Improving the dynamical seasonal prediction of western Pacific warm pool sea surface temperatures using a physical-empirical model. Int. J. Climatol., 40(10), 4657–4675, https://doi.org/10.1002/joc.6481.(利用动力-统计模型提高西太平洋暖池海温的季节预测能力,IF=3.5)
    (29) Zhu, B., B. Sun*, and H. Wang, 2020: Dominant modes of interannual variability of extreme high-temperature events in eastern China during summer and associated mechanisms. Int. J. Climatol., 40(2), 841–857, https://doi.org/10.1002/joc.6242.(揭示东亚夏季极端高温的年际变异机理,IF=3.5)
    (28) 孙博, 王会军, 周波涛, 李惠心, 朱宝艳, 2020: 中国水汽输送年际和年代际变化研究进展. 水科学进展, 31(5), 644–653, https://doi.org/10.14042/j.cnki.32.1309.2020.05.002.
    (27) 靳铮, 游庆龙, 吴芳营, 孙博, 蔡子怡, 2020: 青藏高原三江源地区近60年气候与极端气候变化特征分析. 大气科学学报, 43(6), 1042–1055, https://doi.org/10.13878/j.cnki.dqkxxb.20201008001
    (26) Zhu, B., B. Sun*, H. Li, and H. Wang, 2020: Interdecadal Variations in Extreme High-Temperature Events over Southern China in the Early 2000s and the Influence of the Pacific Decadal Oscillation. Atmosphere, 11(8), 829, https://doi.org/10.3390/atmos11080829.(PDO对华南夏季极端高温的年代际影响机理)
    (25) 王会军, 任宏利, 陈活泼, 马洁华, 田宝强, 孙博, 黄艳艳, 段明铿, 汪君, 王琳, 和周放, 2020: 中国气候预测研究与业务发展的回顾. 气象学报, 78(3), 317–331, https://doi.org/10.11676/qxxb2020.022.
    (24) Wang, Y, H. Li*, B. Sun*, H. Chen, H. Li, and Y. Luo, 2020: Drought impacts on hydropower capacity over the Yangtze River Basin and their future projections under 1.5/2°C warming scenarios. Front. Earth Sci., 8, 578132, https://doi.org/10.3389/feart.2020.578132.(未来长江流域水利发电预估)
    (23) 王会军, 唐国利, 陈海山, 吴绍洪, 效存德, 姜大膀, 周波涛, 孙建奇, 段明铿, 徐影, 罗勇,杨晓光, 王凡, 康世昌, 王毅, 高清竹, 左军成, 张元明, 魏伟, 郑景云, 王国庆, 高学杰, 李宁, 刘传玉, 曾晓东, 鲍艳松, 张弛, 曾刚, 孙博, 黄艳艳, 尹志聪, 张杰, 俞淼, 陈活泼, 祝亚丽, 马洁华, 燕青, 郭东林, 张颖, 高雅, 吴通华, 刘慧, 谭显春, 尹云鹤, 于仁成, 和黄海军, 2020: “一带一路”区域气候变化事实、影响及可能风险. 大气科学学报, 43(1), 1–9, https://doi.org/10.13878/j.cnki.dqkxxb.20180815003.
    (22) Sun, B., H. Wang, and B. Zhou, 2019: Interdecadal variation of the relationship between East Asian water vapor transport and tropical Pacific sea surface temperatures during January and associated mechanisms. J. Climate, 32(21), 7575–7594, https://doi.org/10.1175/JCLI-D-19-0290.1.(揭示东亚水汽输送年代际变异机理,IF=4.8)
    (21) Sun, B., H. Li, and B. Zhou, 2019: Interdecadal variation of Indian Ocean basin mode and the impact on Asian summer climate. Geophys. Res. Lett., 46(21), 12388–12397, https://doi.org/10.1029/2019GL085019.(揭示印度洋海盆一致模年代际变异对东亚夏季气候的影响机理,IF=4.6)
    (20) Sun, B., and H. Wang, 2019: Enhanced connections between summer precipitation over the Three-River-Source region of China and the global climate system. Climate Dyn., 52(5–6), 3471–3488, https://doi.org/10.1007/s00382-018-4326-9.  (揭示三江源夏季降水与全球气候系统联系增强,IF=3.8)
    (19) Sun, B., H. Wang, and B. Zhou, 2019: Climatic condition and synoptic regimes of two intense snowfall events in eastern China and implications for climate variability. J. Geophys. Res.-Atmospheres, 124(2), 926–941, https://doi.org/10.1029/2018JD029921.(东亚两次强降雪事件的天气和气候条件及强降雪变异机理研究,IF=3.8)
    (18) Sun, B., H. Wang, and B. Zhou, and H. Li, 2019: Interdecadal variation in the synoptic features of mei-yu in the Yangtze River valley region and relationship with the Pacific Decadal Oscillation. J. Climate, 32(19), 6251–6270,
    https://doi.org/10.1175/JCLI-D-19-0017.1.  (长江流域梅雨季天气系统的年代际变异及其与PDO的联系,IF=4.8)
    (17) Xie, Z., and B. Sun*, 2019: Different Roles of Water Vapor Transport and Cold Advection in the Intensive Snowfall Events over North China and the Yangtze River Valley. Atmosphere, 10(7), 368, https://doi.org/10.3390/atmos10070368. (水汽输送和冷空气活动对华北和长江流域强降雪事件的影响)
    (16) Zhang, D., Y. Huang, and B. Sun, 2019: Verification and Improvement of the Capability of ENSEMBLES to Predict the Winter Arctic Oscillation. Earth Space Sci., 6(10), 1887–1899, https://doi.org/10.1029/2019EA000771.
    (15) Zhang, D., Y. Huang, B. Sun, F. Li, and H. Wang, 2019: Verification and Improvement of the Ability of CFSv2 to Predict the Antarctic Oscillation in Boreal Spring. Adv. Atmos. Sci., 36(3), 292–302, https://doi.org/10.1007/s00376-018-8106-6.
    (14) Chen, B., C. Wu, X. Liu, L. Chen, J. Wu, H. Yang, T. Luo, X. Wu, Y. Jiang, L. Jiang, H. Y. Brown, Z. Lu, W. Fan, G. Lin, B. Sun, and M. Wu, 2019: Seasonal climatic effects and feedbacks of anthropogenic heat release due to global energy consumption with CAM5. Climate Dyn., 52(11), 6377–6390, https://doi.org/10.1007/s00382-018-4528-1.
    (13) Sun, B., and H. Wang, 2018: Interannual variation of the spring and summer precipitation over the Three River Source region in China and the associated regimes. J. Climate, 31(18), 7441–7457, https://doi.org/10.1175/JCLI-D-17-0680.1.(春、夏季三江源降水的年际变异及机理,IF=4.8)
    (12) Sun, B., 2018: Asymmetric variations in the tropical ascending branches of Hadley circulations and the associated mechanisms and effects. Adv. Atmos. Sci., 35(3), 317–333, https://doi.org/10.1007/s00376-017-7089-z. (哈德来环流上升支的不对称变化及其机理研究,IF=6.5)
    (11) Sun, B., and H. Wang, 2017: A trend towards a stable warm and windless state of the surface weather conditions in northern and northeastern China during 1961–2014. Adv. Atmos. Sci., 34(6), 713–726,  https://doi.org/10.1007/s00376-017-6252-x.  (华北、东北近地表趋向于稳定的热-无风状态,IF=6.5)
    (10) Cao, J., B. Wang, Y. M. Yang, L. Ma, J. Li, B. Sun, Y. Bao, J. He, X. Zhou, and L. Wu, 2018: The NUIST Earth System Model (NESM) version 3: description and preliminary evaluation. Geosci. Model Dev., 11(7), 2975–2993, https://doi.org/10.5194/gmd-11-2975-2018.
    (9) Wang, S., and B. Sun, 2017: The impacts of different land surface parameterization schemes on Northeast China snowfall simulation. Meteor. Atmos. Phys., 130(5), 583–590, https://doi.org/10.1007/s007003-017-0539-4.
    (8) Sun, B., 2017: Seasonal evolution of the dominant modes of the Eurasian snowpack and atmospheric circulation from autumn to the subsequent spring and the associated surface heat budget. Atmos. Oceanic Sci. Lett., 10(3), 191–197, https://doi.org/10.1080/16742834.2017.1286226.( 欧亚积雪及大气环流主模态的季节演变)
    (7) Sun, B., and H. Wang, 2015: Analysis of the major atmospheric moisture sources affecting three sub-regions of East China. Int. J. Climatol., 35(9), 2243–2257, https://doi.org/10.1002/joc.4145.
    影响华东三个亚区的主要大气水分来源分析, IF=3.5,国内较早定量分析水汽源地)
    (6) Sun, B., and H. Wang, 2015: Inter-decadal transition of the leading mode of inter-annual variability of summer rainfall in East China and its associated atmospheric water vapor transport. Climate Dyn., 44(9–10), 2703–2722, https://doi.org/10.1007/s00382-014-2251-0. (华东地区夏季降水年际变化主导模式的年代际转换及其相关的大气水汽输送, IF=3.8)
    (5) Sun, B., and H. Wang, 2014: Moisture sources of semiarid grassland in China using the Lagrangian Particle Model FLEXPART. J. Climate, 27(6), 2457–2474, https://doi.org/10.1175/JCLI-D-13-00517.1. (基于拉格朗日粒子模型FLEXPART的中国半干旱草原水分来源, IF=4.8,国内较早定量分析水汽源地)  
    (4) Sun, B., and H. Wang, 2013: Water vapor transport paths and accumulation during widespread snowfall events in Northeastern China. J. Climate, 26(13), 4550–4566, https://doi.org/10.1175/JCLI-D-12-00300.1. (东北地区大范围降雪过程中水汽输送路径和积累,IF=4.8,国内较早定量分析水汽源地)  
    (3) Sun, B., and H. Wang, 2012: Larger variability, better predictability? Int. J. Climatol., 33(10), 2341–2351, https://doi.org/10.1002/joc.3582.揭示变率与预报性的联系,IF=3.5)  
    (2) Sun, B., and D. Jiang, 2012: Changes of Atmospheric Water Balance over China under the IPCC SRES A1B Scenario Based on RegCM3 Simulations. Atmos. Oceanic Sci. Lett., 5(6), 461–467, https://doi.org/10.1080/16742834.2012.11447032.
    于RegCM3模拟的IPCC SRES A1B情景下中国大气水分平衡的变化

    (1) Sun, B., Y. Zhu, and H. Wang, 2011: The Recent Interdecadal and Interannual Variation of Water Vapor Transport over Eastern China. Adv. Atmos. Sci., 28(5), 1039–1048, https://doi.org/10.1007/s00376-010-0093-1.  (中国东部水汽输送的年代际和年际变化,IF=6.5)

    发明专利:

    一种地下水埋深预测方法、可读存储介质及设备.  发明人:孙博,蔡嘉睿,李惠心,周波涛,王会军. 专利号:ZL202411164162.9 (已授权), 2024.


    著作:  

    安德鲁•德斯勒(Andrew Dessler). 气候危机:科学洞察与政策抉择. 李惠心,孙博,王会军. 北京:气象出版社, 2024.

    王会军,唐国利,陈海山,吴绍洪,效存德,姜大膀,周波涛,孙建奇,段明铿,徐影,罗勇,杨晓光,王凡,康世昌,王毅,高清竹,左军成,张元明,魏伟,郑景云,王国庆,高学杰,李宁,刘传玉,曾晓东,鲍艳松,张弛,曾刚,孙博,黄艳艳,施宁,尹志聪,张杰,俞淼,陈活泼,祝亚丽,马洁华,燕青,郭东林,汪君,张颖,高雅,吴通华,刘慧,谭显春,尹云鹤,于仁成,黄海军,许艳,刘娜,战云健,任玉玉 :“一带一路”区域气候变化灾害风险. 北京:气象出版社, 2021: 1-151.

    王会军,段明铿,尹志聪,陆春松,周波涛,胡建林,孙博,黄艳艳,张其林:院士解锁中国科技(气象卷)----天有可测风云. 北京:中国少年儿童出版社. 2023: 1-136.






  • 近期科研项目:  

    2022-2027:科技部重点研发计划课题(2022YFF0801704)“北极-热带关联对全球变暖的响应和反馈”,课题负责人
    2020:南京信息工程大学 “课程思政” 教学改革研究专项课题,参与
    2020:南京信息工程大学 大气科学学院 优秀青年人才项目,项目负责人
    2019:南京留学人员科技创新项目(C类)“三江源地区夏季极端降水频次的年代际变化及动力机制研究”,项目负责人
    2019-2021:国家自然科学基金青年基金项目(41805047)“三江源地区夏季降水年际和年代际变率的水汽输送动力机制及全球海温的调控作用”,项目负责人
    2018-2021:江苏省自然科学基金青年基金项目(BK20180807)“三江源地区冬季降水年代际变化及其物理机制研究”,项目负责人
    2018-2020:江苏省高等学校自然科学研究面上项目(18KJB170014)“三江源夏季降水年际和年代际变化及其动力机制研究” ,项目负责人