王明
32

个人信息Personal Information

副教授 硕士生导师

教师拼音名称:Wang Ming

所在单位:大气物理学院

办公地点:气象楼811

性别:男

联系方式:邮箱:mingwang@nuist.edu.cn QQ:742094940

职称:副教授

硕士生导师

其他联系方式Other Contact Information

邮箱 : mingwang@nuist.edu.cn

个人简介Personal Profile

学习与工作经历:

● 2022.01-至今 南京信息工程大学 大气物理学院 空间天气研究所 副教授

● 2020.02-2022.01 澳门科技大学 月球与行星科学国家重点实验室 博士后

● 2015.06-2021.12 南京信息工程大学 数学与统计学院 讲师

---------------------------------------------------------------------------------------------

● 2012.09-2015.06 南京信息工程大学 空间天气学专业 博士研究生

● 2009.09-2012.06 南京信息工程大学 空间天气学专业 硕士研究生

● 2005.09-2009.06 南京信息工程大学 物理学专业 理学学士

研究领域:

● 太阳风-磁层耦合

● 火星空间环境研究

科研成果:

发表论文:


第一作者文章:

1) Wang, M., Xu, Q., Xie, L., Li, L., & Xu, X. (2024c). The dynamic Venusian bow shock model with the nonlinear effect of magnetosonic Mach number based on Venus Express observations. Journal: Journal of Geophysical Research: Space Physics, https://doi.org/10.1029/2024JA032741

2) Wang, M., Guan, Z., Xie, L., Lu, J., Wei, G., Sui, H., et al. (2024b). The effect of the interplanetary magnetic field clock angle and the latitude location of the intense crustal magnetic field on the ion escape at Mars: An MHD simulation study. Journal of Geophysical Research: Space Physics, 129, e2024JA032806. https://doi.org/10.1029/2024JA032806

3) Wang, M., Xu, Q., Xie, L., Li, L., & Xu, X. (2024a). A 3D Parametric Venusian Bow Shock Model with the Effects of Mach Number and Interplanetary Magnetic Field. The Astronomical Journal, 167(2), 81.

4) Wang, M., Guan, Z. J., Xie, L.*, Lu, J. Y.*, Xu, X., Wei, Y., Zhou, Z., Chai, L., Wang, J., Chang, Q., Zhang, H. X., Qu, B. H., Sui, H. Y., Zhang, J. Q., Qiao, F. H., & Li, L. (2023b). Three-dimensional MHD Simulations of the Magnetic Pileup at Mars. The Astronomical Journal, 166(4), 179.

5) Wang, M., Xu, K., Lu, J. Y., Yin, M. X., Sui, H. Y., Guan, Z. J., & Zhang, J. Q. (2023a). The Dependence of the Location and Pressure Variations of the Martian Magnetic Pileup Boundary on the Interplanetary Magnetic Field: An MHD Simulation Study. The Astrophysical Journal, 954, 60.

6) Wang, M., Xu, X., Lee, L. C., Lu, J. Y., Xie, L., Wang, J., Y. Jiang, Y. Ye, Z. Zhou, Q. Xu, Q. Chang, X. Wang, L. Luo, S. Fu, H. Y. Sui, Z. J. Guan, & Li, L. (2022b). A magnetohydrodynamic simulation of the dayside magnetic reconnection between the solar wind and the Martian crustal field. Astronomy & Astrophysics, 667, A41.

7) Wang, M., Sui, H. Y., Lu, J. Y., Xie, L., Kabin, K., Zhou, Y., Zhang, H. X., Qu, B. H., Guan Z. J., Qiao, F.H., & Li, L. (2022a). A 3D parametric Martian magnetic pileup boundary model with the effects of solar wind density, velocity, and IMF. Astronomy & Astrophysics, 664, A74.

8) Wang, M., Lee, L. C., Xie, L., Xu, X. J., Kabin, K., Lu, J. Y., Wang, J., Li, L, and Sui, H.Y. (2021). Effect of solar wind density and velocity on the subsolar standoff distance of the Martian magnetic pileup boundary. Astronomy & Astrophysics, 651, A22. 

9) Wang, M., Xie, L., Lee, L. C., Xu, X. J., Kabin, K., Lu, J. Y., Wang, J., & Li, L. (2020c). A 3D Parametric Martian Bow Shock Model with the Effects of Mach Number, Dynamic Pressure, and the Interplanetary Magnetic Field. The Astrophysical Journal, 903(2), 125. 

10) Wang, M., Lu, J. Y., Kabin, K., Yuan, H. Z., Zhou, Y., & Guan, H. Y. (2020a). Influence of the Interplanetary Magnetic Field Cone Angle on the Geometry of Bow Shocks. The Astronomical Journal, 159(5), 227. 

11) Wang, M., Lu, J. Y., Kabin, K., Yuan, H. Z., Liu, Z. Q., Zhao, J. S., Li, G. (2018) The influence of IMF By on the bow shock: observation result. Journal of Geophysical Research: Space Physics, 123(3): 1915-1926. 

12) Wang, M., Lu, J. Y., Kabin, K., Yuan, H. Z., Ma, X., Liu, Z. Q., Yang, Y. F., Zhao, J.Y., Li, G. (2016). The influence of IMF clock angle on the cross section of the tail bow shock. Journal of Geophysical Research: Space Physics, 121(11): 11077-11085. 

13) Wang, M., Lu, J. Y., Yuan, H. Z., Kabin, K., Liu, Z. Q., Zhao, M. X., & Li, G. (2015). The dipole tilt angle dependence of the bow shock for southward IMF: MHD results. Planetary and Space Science, 106, 99-107. 

14) Wang M, Yu C, Lu J Y, et al. 2020b. Effects of IMF By on the bow shock: MHD results. Chinese Journal of Geophysics (in Chinese), 63(5): 1725-1737. doi:10.6038/cjg2020M0563.

(王明,于超,吕建永等.2020c.行星际磁场By对弓激波影响的MHD结果.地球物理学报,63(5): 1725-1737. doi:10.6038/cjg2020M0563.) 

15) Wang M, Lu J Y, Li G. 2014. The study of the solar wind pressure coefficient, Chinese Journal of Geophysics (in Chinese) (SCIE), 57(11), 3804-3811. doi:10.6038/cjg20141101. 

(王明, 吕建永, & 李刚. (2014). 太阳风压力系数的研究. 地球物理学报, 57(11), 3804-3811.)

16) Wang M, Lu J Y, Liu Z Q, Pei S X. Dependence of magnetic field just inside the magnetopause on subsolar standoff distance: Global MHD results. Chinese Science Bulletin, 2012, 57: 1–6, doi: 10.1007/s11434-011-4961-6


通讯作者文章:

17) Lu, J. Y., Wang, M.*, Kabin, K., Zhao, J. S., Liu, Z. Q., Zhao, M. X., & Li, G. (2015). Pressure balance across the magnetopause: Global MHD results. Planetary and Space Science, 106, 108-115. 

18) Lu, J. Y.*, Zhang, H. X., Wang, M.*, Kabin, K., Zhou, Y., & Li, J. Y. (2021). Energy Transfer Across the Magnetopause Under Radial IMF Conditions. The Astrophysical Journal, 920(1), 52. 

19) 李宏硕, 吕建永*, 王明*, 袁换只, & 周悦. (2021). 基于卫星观测的上游等离子体β与磁层顶厚度、速度等特征参数关系的统计研究. 地球物理学报, 64(9), 3005-3020. 

LI, H., LÜ, J.*, WANG, M.*, YUAN, H., & ZHOU, Y. (2021). A statistical study of the relationship between the upstream plasma β and characteristic parameters such as magnetopause thickness and velocity based on satellite observations. Chinese Journal of Geophysics, 64(9), 3005-3020.

20) Sui, H. Y., Wang, M.*, Lu, J. Y., Zhou, Y., & Wang, J. (2023). Interplanetary Magnetic Field Effect on the Location of the Martian Bow Shock: MAVEN Observations. The Astrophysical Journal, 945(2), 136.

21) Zhang, H.X., Lu, J.Y.* & Wang, M.*. Energy transfer across magnetopause under dawn–dusk IMFs. Scientific Reports 13, 7409 (2023). https://doi.org/10.1038/s41598-023-34082-2.

22) Wang, X., Lu, J.*, Wang, M.*, Zhou, Y., & Hao, Y. (2023). Simultaneous observation of magnetopause expansion under radial IMF and indention by HSJ. Geophysical Research Letters, 50, e2023GL105270. https://doi.org/10.1029/2023GL105270.

23) Zhang, H. X., Lu, J. Y.*, Wang, M.*, & Zhou, Y. (2024). Comparison of Solar Wind Interaction with Mars and Earth: Energy Transfer. The Astrophysical Journal, 968(2), 84.

24) 高扬, 吕建永*, 王明*, 李婧媛, 熊雅婷, & 彭光帅. (2022). 基于深度学习的太阳f_(10.7)辐射通量的短期预报研究. 天文学报, 63(1), 11. 




合作作者文章:

25) 冯静伊, 周悦, 吕建永, 王明, 张赫. Kelvin-Helmholtz不稳定性在中磁尾磁层顶的晨昏不对称性分布[J]. 空间科学学报. doi: 10.11728/cjss2024-0038

26) Zhang, H., Zhong, Z. H., Lu, J. Y., Wang, M., Yi, Y. Y., Tang, R. X., & Deng, X. H. (2024). Statistical Properties of Whistler-mode Waves in the Dayside Terrestrial Space: MMS Observations. The Astrophysical Journal, 969(1), 14.

27) Qu, B. H., Lu, J. Y., Wang, Z. W., Liu, J. J., Wang, M., Li, J. Y., & Zhang, H. (2024), Estimation of Ionospheric Field-Aligned Currents Using SuperDARN Radar and DMSP Observations. Journal of Geophysical Research: Space Physics, 129. 564 https://doi.org/10.1029/2024JA032708.

28) Xu, W., Zhu, Y., Zhu, L., Lu, J., Wei, G., Wang, M., & Peng, Y. (2023). A class of Bayesian machine learning model for forecasting Dst during intense geomagnetic storms. Advances in Space Research, 72(9), 3882-3889.

29) He, P., Xu, X., Yu, H., Wang, X., Wang, M., Chang, Q., ... & Li, H. (2022). The Mercury’s Bow-shock Models Near Perihelion and Aphelion. The Astronomical Journal, 164(6), 260.

30) Liu, X. J., Wang, Z. W., Lu, J. Y., Liu, J. J., Hu, H. Q., Liu, J., Wang, M., & Zhao, K. (2022). Extreme Solar Flare-driven Short-wave Fadeout Observed by SuperDARN ZHO Radar. The Astrophysical Journal, 933(1), 45.

31) Chang, Q., Xu, X., Wang, X., Ye, Y., Xu, Q., Wang, J., Wang, M., Zhou, Z., Luo, L., Cheng, S., & He, P. (2022). The Solar Wind Parker Spiral Angle Distributions and Variations at 1 au. The Astrophysical Journal, 931(2), 105.

32) Xu, Q., Xu, X., Zuo, P., Xie, L., Wang, M., Chang, Q., Wang, J., Ye, Y., Zhou, Z., Wang, X., Luo, L., & Gu, H. (2022). The Dependence of the Venusian Induced Magnetosphere on the Interplanetary Magnetic Field: An MHD Study. The Astrophysical Journal, 931(2), 95.

33) Xiaojun. Xu, Lou-Chuang Lee, Qi Xu, Qing Chang, Jing Wang, Ming Wang, Shaosui Xu, Christian Möstl, Charles J. Farrugia, Xing Wang, Yudong Ye, Zilu Zhou, Lei Luo, Peishan He, Shaoguan Cheng, The siphonic energy transfer between hot solar wind and cold Martian ionosphere through open magnetic flux rope, Fundamental Research, 2022, ISSN 2667-3258, https://doi.org/10.1016/j.fmre.2022.04.014.

Xu, X., Lee, L. C., Xu, Q., Chang, Q., Wang, J., Wang, M., ... & Cheng, S. (2022). The siphonic energy transfer between hot solar wind and cold martian ionosphere through open magnetic flux rope. Fundamental Research. 

34) Wang, X., Xu, X., Ye, Y., Wang, J., Wang, M., Zhou, Z., Chang, Q., Xu, Q., Xu, J., Luo, L., He, P., & Cheng, S. MAVEN Observations of the Kelvin-Helmholtz Instability Developing at the Ionopause of Mars. Geophysical Research Letters, e2022GL098673.

35) Zhou, Z., Xu, X., Zuo, P., Wang, Y., Wang, L., Ye, Y., Wang, M., Chang, Q., Wang, X., & Luo, L. PSP observations of a slow shock pair bounding a large-scale plasmoid/macro magnetic hole. Geophysical Research Letters, e2021GL097564.

36) Zhou, Y., Lu, J., & Wang, M. (2022). Kelvin–Helmholtz Waves on the Magnetopause at the Lunar Distances under Southward IMF: ARTEMIS Observations. Universe, 8(4), 209.

37) Zhou, Y., Shue, J. H., Hasegawa, H., Lu, J., Wang, M., & Zhang, H. (2022). Spatial Scales of the Velocity Shear Layer and Kelvin-Helmholtz Waves on the Magnetopause: First Statistical Results. Geophysical Research Letters, 49(4), e2021GL097271.

38) Wang, Z., Lu, J., Hu, H., Liu, J., Hu, Z., Wang, M., ... & Guan, H. (2022). HMB Variations Measured by SuperDARN During the Extremely Radial IMFs: Is the coupling function applicable in radial IMF?. Journal of Geophysical Research: Space Physics, 127(2), e2021JA029589.

39) Zhou, Z., Xu, X., Zuo, P., Wang, Y., Xu, Q., Ye, Y., Wang, J., Wang, M., Chang, Q., & Luo, L. (2022). Evidence for Plasma Heating at Thin Current Sheets in the Solar Wind. The Astrophysical Journal Letters, 924(2), L22.

40) Lu, J. Y., Xiong, Y. T., Zhao, K., Wang, M., Li, J. Y., Peng, G. S., & Sun, M. (2022). A Novel Bimodal Forecasting Model for Solar Cycle 25. The Astrophysical Journal, 924(2), 59.

41) Wang, J., Yu, J., Xu, X., Cui, J., Cao, J., Ye, Y., Xu, Q., Wang, M., Zhou, Z., Chang, Q., Xu, J., & Wang, X. (2021). MAVEN Observations of Magnetic Reconnection at Martian Induced Magnetopause. Geophysical Research Letters, 48(21), e2021GL095426.

42) Xu, Q., Xu, X., Zhang, T. L., Rong, Z. J., Wang, M., Wang, J., Ye, Y., Zhou, Z., Chang, Q., Xu, J., Wang, X., & Luo, L. (2022). The Venus Express observation of Venus’ induced magnetosphere boundary at solar maximum. Astronomy & Astrophysics. DOI: 10.1051/0004-6361/202141391.

43) Su, W., Wang, Y., Zhou, C., Lu, L., Zhou, Z. B., Li, T. M., Shi, T., Hu, X. C., Zhou, M. Y., Wang, M., Yeh, H. C., Wang, H., & Chen, P. F. (2021). Analyses of Laser Propagation Noises for TianQin Gravitational Wave Observatory Based on the Global Magnetosphere MHD Simulations. The Astrophysical Journal, 914(2), 139.

44) Qu, B., Lu, J., Wang, M., Yuan, H., Zhou, Y., & Zhang, H. (2021). Formation of the bow shock indentation: MHD simulation results. Earth and Planetary Physics, 5(3), 259-269.

45) Su, W., Wang, Y., Zhou, Z. B., Bai, Y. Z., Guo, Y., Zhou, C., Lee, T., Wang, M., Zhou, M. Y., Shi, T., Yin, H., & Zhang B. T. (2020). Analyses of residual accelerations for TianQin based on the global MHD simulation. Classical and Quantum Gravity, 37(18), 185017.

46) Shang, W. S., Tang, B. B., Shi, Q. Q., Tian, A. M., Zhou, X. Y., Yao, Z. H., ... & Wang, M. (2020). Unusual Location of the Geotail Magnetopause Near Lunar Orbit: A Case Study. Journal of Geophysical Research: Space Physics, 125(4), e2019JA027401.

47) Yuan, H., Zhang, H., Lu, J., Zhu, C., & Wang, M. (2020). Flow vortex-associated downward field-aligned current retreating in the near-Earth plasma sheet. Earth and Space Science, 7(2), e2019EA000916.

48) Lu, J. Y., Jin, C. Q., Wang, M., Ji, H. S., Iluore, K., Guan, H. Y., Li, J. F., & Li, J. Y. (2019). Generalized additive modeling combined with multiple collinear for ICME velocity forecasting. Space Weather, 17(4), 567-585.

49) Lu, J. Y., Zhou, Y., Ma, X., Wang, M., Kabin, K., & Yuan, H. Z. (2019). Earth's Bow Shock: A New Three-Dimensional Asymmetric Model With Dipole Tilt Effects. Journal of Geophysical Research: Space Physics, 124(7), 5396-5407.

50) Lu, Y. J., Zhang, H. X., Wang, M., Gu, C. L., and Guan, H. Y. (2018). Magnetosphere response to the IMF turning from north to South. Earth Planet. Phys., 3(1), 8–16. http://doi.org/10.26464/epp2019002.

51) 徐佳莹, 吕建永, 王明, 等. 2018. 行星际磁场对极尖区位形变化的统计研究. 地球物理学报, 61(9): 3526-3535, doi: 10.6038/cjg2018M0118.

Xu J Y, Lü J Y, Wang M, et al. 2018. Cusp location dependence on IMF: Cluster statistical study. Chinese J. Geophys. (in Chinese), 61(9): 3526-3535, doi: 10.6038/cjg2018M0118.

52) Tang, Y., Zhao, J., Sun, H., Lu, J., & Wang, M. (2017). Effects of ion thermal pressure on wave properties of electromagnetic ion cyclotron waves in a H+-He+-O+ plasma. Physics of Plasmas, 24(5), 052120.

53) Ma, X., Lu, J. Y., & Wang, M. (2017). Pressure balance across the magnetopause during the solar wind event on 5 June 1998. Planetary and Space Science, 139, 11-17.

54) Lu, J., Yuan, H., Wang, M., & Yang, Y. (2016). Dipole tilt controls bow shock location and flaring angle. Science China Earth Sciences, 1-9.

55) Liu, J., Shi, Q., Tian, A., Lü, J., Wu, H., Wang, M., ... & Feng, Y. (2016). Shape and position of Earth’s bow shock near-lunar orbit based on ARTEMIS data. Science China Earth Sciences, 59(8), 1700-1706.

56) Lu J Y, Peng Y X, Wang M, et al. (2016) Support Vector Machine combined with Distance Correlation learning for Dst forecasting during intense geomagnetic storms[J]. Planetary and Space Science, 2016, 120: 48-55.

57) Z. Q. Liu, Lu, J. Y., Wang, C., Kabin, K., Zhao, J. S., Wang, M., Han, J. P., Wang, J. Y., Zhao, M. X. (2015). A three-dimensional high Mach number asymmetric magnetopause model from global MHD simulation. Journal of Geophysical Research: Space Physics, 120(7), 5645-5666.

58) Jing, H., Lu, J. Y., Kabin, K., Zhao, J. S., Liu, Z. Q., Yang, Y. F., Zhao, M. X., Wang, M. (2014). MHD simulation of energy transfer across magnetopause during sudden changes of the IMF orientation. Planetary and Space Science, 97, 50-59.

59) 荆浩, 吕建永, 蒋勇, 王明, 胡慧萍, 刘子谦. 太阳风向磁层输入电磁能量研究.空间科学学报.(核心期刊)2014, 34(3): 269-277, doi:10.11728/cjss2014.03.269

60) 胡慧萍, 吕建永, 周全, 王明, 杨亚芬, 刘子谦, 裴世鑫. 太地球弓激波的三维模拟. 空间科学学报.(核心期刊)35(1): 1-8, doi:10.11728/cjss2015.01.001. 2015.

61) 袁换只, 吕建永, & 王明. (2016). 偶极倾角对弓激波日下点距离和尾部张角的影响. 空间科学学报, 36(3), 272-278.

62) 商文赛, 吕建永, 王明, & 倪素兰. (2018). Deflection of magnetopause in the distant magnetotail. 远磁尾磁层顶位形的偏转. 空间科学学报, 038(003), 307-314.

63) 孟琛, 吕建永, 王明, 顾春利, & 季海生. (2019). Transport time for the geomagnetic storm caused by cme%cme引起的地磁暴穿越时间. 空间科学学报, 039(003), 303-309. 

64) 周悦, 吕建永, 王明, & 袁换只. (2020). 弓激波模型的对比. 空间科学学报, 40(6), 990-999.



主持项目:

(1) 国家自然科学基金面上基金,磁层状态对径向行星际磁场的响应及其机制研究,编号:4207419559万,202101-202412月,主持。

(2) 国家自然科学基金青年基金,行星际磁场Bx对磁层顶和弓激波位型的影响及其机制研究,编号:4160414120万,20171-201912月,主持。

(3) 江苏省自然科学基金青年基金,行星际磁场时钟角对弓激波位型的影响及其机制研究,编号:BK2016095220万,20169-20198月,主持。


荣誉:

2019年7月 入选人社部“澳门青年学者”计划

2013年10月 第三届全球华人空间天气大会 优秀青年论文奖

2014年09月 第九次全国空间天气学研讨会 优秀青年论文奖

2013年11月 全国博士研究生学术论坛优秀论文二等奖

  • 教育经历Education Background
  • 工作经历Work Experience
  • 研究方向Research Focus
  • 社会兼职Social Affiliations
    暂无内容