个人简介

王廷春,现为南京信息工程大学数学与统计学院教授、博士生导师、计算数学团队负责人、龙山学者江苏省青蓝工程中青年学术带头人。担任江苏省计算数学学会常务理事、美国《数学评论》评论员、Journal of Information and Computing Science》期刊副主编。作为访问学者多次赴新加坡国立大学、美国夏威夷大学、中科院计算数学所、北京计算科学研究中心等科研院所进行学术交流。从事偏微分方程数值解和计算物理方面的研究工作,特别是在非线性Schrödinger方程、Zakharov方程、Klein-Gordon-Dirac方程等色散方程(组)的有限差分法、有限元法和谱方法的算法研究方面做出一些新的学术成果。相关成果发表在《Journal of Computational Physics》、《Journal of Scientific Computing》、《Advances in Computational Mathematics》、《SCIENCE CHINA Mathematics》、《Journal of Computational Mathematics》、《中国科学-数学》等学术期刊上。先后主持多项国家自然科学基金和江苏省自然科学基金。科研成果和教学成果分别获得江苏省高校自然科学奖一等奖和江苏省教学成果奖一等奖。


  • 2011年至今发表的部分学术论文

2022年

[28] Yongyong Cai, Jinxue Fu, Jianfeng Liu, Tingchun Wang*, A fourth-order compact finite difference scheme for the quantum Zakharov system that perfectly inherits both mass and energy conservation, Applied Numerical Mathematics, (2022) DOI:10.1016/j.apnum.2022.03. 009.

[27] Teng Zhang, Tingchun Wang*, Uniform error bound of a conservative fourth-order compact finite difference scheme for the Zakharov system in the subsonic regime, Advances in Computational Mathematics, (2022) DOI:10.1007/s10444-022-09944-4.

2021

[26] Jiyong Li, Tingchun Wang*, Optimal point-wise error estimate of two conservative fourth-order compact finite difference schemes for the nonlinear Dirac equation, Applied Numerical Mathematics, 162 (2021) 150-170.

[25] Feng Liao, Fazhan Geng, Tingchun Wang*, A mass and energy conservative fourth-order compact difference scheme for the Klein-Gordon-Dirac equations, Calcolo, 59(1) (2021) DOI: 10.1007/s10092-021-00452-3.

2020

[24] Teng Zhang, Tingchun Wang*, Optimal error estimates of fourth-order compact finite difference methods for the nonlinear Klein-Gordon equation in the nonrelativistic regime, Numerical Methods for Partial Differential equations, 37(3) (2020) DOI: 10.1002/num.22664.

[23] Feng LiaoLuming ZhangTingchun Wang*,  Two energy-conserving and compact finite difference schemes for two-dimensional Schrödinger-Boussinesq equations, Numerical Algorithms, 85 (2020) 1335-1363

[22] Tingchun Wang*, Jialing Wang, Boling Guo, Two completely explicit and unconditionally convergent Fourier pseudo-spectral methods for solving the nonlinear Schrödinger equationJournal of Computational Physics, 404 (2020) 109116. 

2019

[21] Tingchun Wang*, Boling Guo, Unconditional convergence of linearized implicit finite difference method for the 2D/3D Gross-Pitaevskii equation with angular momentum rotation, SCIENCE CHINA Mathematics, 62(9) (2019) 1669-1686.

[20 Tingchun Wang*, Xiaofei Zhao, Mao Peng, Peng Wang, Efficient and accurate numerical methods for long-wave short-wave interaction equations in the semiclassical limit regime, Journal of Computational Mathematics, 37(2019) 647-667.

[19] Linghua Kong, Tingchun Wang, Liqun Kuang*, Efficient Numerical Schemes for Two-dimensional Ginzburg-Landau Equation in Superconductivity, Discrete and Continuous Dynamical Systems Series B, 24 (2019) 6325-6347. 

[18] Feng Liao, Luming Zhang, Tingchun Wang*, Unconditional L convergence of a conservative compact finite difference scheme for the N-coupled Schrödinger-Boussinesq equations,Applied Numerical Mathematics, 138(2019) 54-77.

2018

[17] Xuanxuan Zhou, Tingchun Wang, Luming Zhang*, Two numerical methods for the Zakharov-Rubenchik equations, Advances in Computational Mathematics, 45(3) (2018) 1163-1184.

[16] Tingchun Wang*, Xiaofei Zhao, Unconditional L convergence of two compact conservative finite difference schemes for the nonlinear Schrödinger equation in multi-dimensions, Calcolo, DOI: 10.1007/s10092-018-0277-0. 

[15] Tingchun Wang*, Jiaping Jiang, Xiang Xue, Unconditional and optimal H1 error estimate of a Crank-Nicolson finite difference scheme for the Gross-Pitaevskii equation with an angular momentum rotation term, Journal of Mathematical Analysis and Applications, 459 (2) (2018) 945-958.

[14] Tingchun Wang*, Xiaofei Zhao, Jiaping Jiang, Unconditional and optimal H2-error estimates of two linear and conservative finite difference schemes for the Klein-Gordon-Schrödinger equation in high dimensions,  Advances in Computational Mathematics44 (2018) 477-503.

2017

[13] Jialin Hong, Lihai Ji, Linghua Kong, Tingchun Wang*, Optimal error estimate of a compact scheme for nonlinear Schrödinger equation, Applied Numerical Mathematics, 120 (2017) 68-81.

[12] Tingchun Wang*, A linearized, decoupled and energy-preserving compact finite difference scheme for the coupled nonlinear Schrodinger equations, Numerical Methods for Partial Differential Equations, 33(3) (2017) 840–867.   

2015

[11] Tingchun Wang*, Uniform pointwise error estimates of semi-implicit compact finite difference methods for the nonlinear Schrodinger equation perturbed by wave operator, Journal of Mathematical Analysis and Application, 422 (2015) 286-308. 

2014

[10] Tingchun Wang*, Xiaofei Zhao, Optimal l∞ error estimates of finite difference methods for the coupled Gross-Pitaevskii equations in high dimensions, SCIENCE CHINA Mathematics, 57 (10) (2014)  2189-2214.   

[9] Tingchun Wang*, Optimal Point-Wise Error Estimate of a Compact Difference Scheme for the Coupled Gross-Pitaevskii Equations in One Dimension, Journal of Scientific Computing, 59 (1) (2014) 158-186.  

[8] Tingchun Wang*, Optimal Point-Wise Error Estimate of a Compact Difference Scheme for the Coupled Nonlinear Schrödinger Equations, Journal of Computational Mathematics, 32 (1) (2014) 58–74.  

[7] Tingchun Wang*, Optimal point-wise error estimate of a compact difference scheme for the Klein-Gordon-Schrödinger equation, Journal of Mathematical Analysis and Application412 (2014) 155-167.

2013

[6] Yanan Zhang, Zhizhong Sun*, Tingchun Wang, Convergence analysis of linearized Crank-Nicolson scheme for the two-dimensional complex Ginzburg-Landau equation, Numerical Methods for Partial Differential Equations, 29 (5) (2013),1487-1503.  

[5] Tingchun Wang*, Boling Guo, Qiubin Xu, Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions, Journal of Computational Physics, 243 (2013) 382-399.   

2012

[4] Honglin Liao, Zhizhong Sun*, Hansheng Shi, Tingchun Wang, Convergence of compact ADI method for solving linear Schrödinger equations, Numerical methods for Partial Differential Equations, 28 (2012) 1598-1619.   

2011

[3] 王廷春*, 郭柏灵, 一维非线性Schrödinger 方程的两个无条件收敛的守恒紧格式, 中国科学:数学, 41(2011) 207-233.  

[2] Tingchun Wang*, Maximum error bound of a linearized difference scheme for coupled nonlinear Schrödinger equation, Journal of Computational and Applied mathematics, 235 (2011) 4237-4250.  

[1] Shengfu Deng, Boling Guo, Tingchun Wang*, Travelling wave solutions of ageneralized Camassa-Holm-Degasperis-Procesi equation, SCIENCE CHINA Mathematics, 54 (2011) 555-572. 


  • 主持承担的项目

[1] 2012.1.1-2012.12.31,国家自然科学基金(天元基金11126929),“一类高维非线性发展方程的高精度有限差分算法”,3万,主持,已结题。

[2] 2013.1.1-2015.12.31,国家自然科学基金(青年基金11201239),“广义薛定谔方程的高精度快速算法及其收敛性分析”,22万,主持,已结题。

[3] 2016.1.1-2019.12.31,国家自然科学基金(面上项目11571181),“高振荡薛定谔型方程(组)的高分辨率快速算法”,50万,主持,已结题。

[4] 2016.6-2019.6,江苏省高校“青蓝工程”中青年学术带头人培养对象项目,5万,主持,已结题。

[5] 2017.7-2020.6,江苏省自然科学基金(面上项目BK20171454),“高维高振荡非线性薛定谔型方程的高精度快速算法”,10万元,主持,已结题。




  • 研究方向
  • 社会兼职
  • 微分方程数值解
  • 计算物理

    暂无内容

  • 教育经历
  • 工作经历
  • 1998.9-----2002.7

    石河子大学 | | 大学本科毕业 | 理学学士

  • 2002.9-----2005.4

    南京航空航天大学 | | 硕士研究生毕业 | 理学硕士

  • 2005.4-----2008.6

    南京航空航天大学 | | 博士研究生毕业 | 理学博士

  • 2010.11-----至今

    数学与统计学院 | 南京信息工程大学 | 在岗

  • 2009.1-----2010.10

    八室 | 北京应用物理与计算数学研究所

  • 2008.6-----2008.12

    理学院 | 南京航空航天大学

团队成员

暂无内容

+

王廷春

个人信息

  • 教师姓名: 王廷春
  • 性别:
  • 所在单位: 数学与统计学院(公共数学教学部)
  • 办公地点:藕舫楼811
  • 联系方式: wangtingchun@nuist.edu.cn
  • 在职信息: 在岗
  • 职称: 教授
  • 毕业院校:南京航空航天大学
  • 学科:数学

曾获荣誉

  • 2016曾获荣誉当选:江苏省高校“青蓝工程”中青年学术带头人培养对象
  • 2018曾获荣誉当选:南京信息工程大学优秀党务工作者
  • 2019曾获荣誉当选:南京信息工程大学龙山学者

其他联系方式

  • 邮编:
  • 通讯/办公地址:
  • 邮箱:

最后更新时间:--

 

访问量:

    • 2019 南京信息工程大学·网络信息中心 NUIST备80008     服务电话:025-58731542