个人简历

       王廷春,2008年博士毕业于南京航空航天大学,后至北京应用物理与计算数学研究所做博士后(合作导师为郭柏灵院士),2010年11月至今在南京信息工程大学工作,现为南信大数学与统计学院教授、博士生导师、计算数学团队负责人、江苏省“青蓝工程”中青年学术带头人。作为访问学者多次赴新加坡国立大学、美国夏威夷大学、中科院计算数学所、北京计算科学研究中心等科研院所进行学术交流,曾受邀在第九届世界华人数学家大会做45分钟邀请报告。从事偏微分方程数值解和计算物理方面的研究工作,在非线性Schrödinger方程、Zakharov方程、Klein-Gordon-Dirac方程等色散方程(组)的有限差分法、有限元法和谱方法的算法研究方面做出一些新的学术成果。相关成果发表在Journal of Computational Physics、Journal of Scientific Computing、SCIENCE CHINA Mathematics、Journal of Computational Mathematics等学术期刊上,论文被引1500余次。先后主持多项国家自然科学基金和江苏省自然科学基金。科研成果和教学成果分别获得江苏省高校自然科学奖一等奖和江苏省教学成果奖一等奖。

    已发表的学术成果可见个人网页:

https://www.researchgate.net/profile/Tingchun-Wang

https://scholar.google.com/citations?user=GsefvSAAAAAJ 

部分已发表或录用的论文(注:论文被引1500余次,* 表示通讯作者。):   

Leilei Shi, Tingchun Wang*,Xuanxuan Zhou, Optimal point-wise error estimate of two second-order accurate finite difference schemes for the heat equation with concentrated capacity, Journal of Computational Mathematics, https://www.global-sci.org/intro/online.html?journal=jcm&page=3.

Tingchun Wang*, Tingfeng Wang, Xiaofei Zhao, Stable and conservative finite difference time-domain methods for rotating nonlinear Klein-Gordon equation, East Asian Journal on Applied Mathematics, accepted.

Jianfeng Liu, Qinglin Tang, Tingchun Wang*,  A mass- and energy-preserving numerical scheme for solving coupled Gross-Pitaevskii equations in high dimensions, Numerical Methods for Partial Differential equations, 39 (6) (2023) 4248-4269.

Tingchun Wang*, Zhuo Yang, Uniform error bound of a Crank-Nicolson-type finite difference scheme for Zakharov system in the subsonic limit regime, Mathematical Methods in the Applied Sciences,  46 (12) (2023) 12840-12866.

Tingchun Wang*, Tingfeng Wang, Optimal point-wise error estimates of two conservative finite difference schemes for  the coupled Gross-Pitaevskii equations with angular momentum rotation terms, Journal of Computational and Applied Mathematics, 425(2023) 115056.  

Tingchun Wang, Yue Cheng, Lihai Ji*, Unconditional optimal error estimates of conservative methods for Klein-Gordon-Dirac system in two dimensions, Applied Numerical Mathematics, 183 (2023) 263–278 . 

Feng Liao, Fazhan Geng, Tingchun Wang*, Two energy-preserving Fourier pseudo-spectral methods and error estimate for the Klein-Gordon-Dirac system, Communications in Nonlinear Science and Numerical Simulation, 118 (2023) 107064. 

Shasha Bian, Yue Cheng, Boling Guo, Tingchun Wang*, Error estimate of a new conservative finite difference scheme for the Klein-Gordon-Dirac system, Numerical Mathematics-Theory, Methods and Applications,16 (2023) 140-164.  

Jialing Wang, Tingchun Wang*, Yushun Wang, A new framework of convergence analysis for solving the general nonlinear Schrödinger equation using the Fourier pseudo-spectral method in two dimensions, Advances in Applied Mathematics and Mechanics, doi:10.4208/aamm.OA-2021-0219.   

Jianfeng Liu, Tingchun Wang*, Teng Zhang, A second-order finite difference scheme for the multi-dimensional nonlinear time-fractional Schrödinger equation, Numerical Algorithms, 92 (2023) 1153–1182. 

Teng Zhang, Tingchun Wang*, Uniform error bound of a conservative fourth-order compact finite difference scheme for the Zakharov system in the subsonic regime, Advances in Computational Mathematics, 48 (2022) 40. DOI:10.1007/s10444-022-09944-4.

Yongyong Cai, Jinxue Fu, Jianfeng Liu, Tingchun Wang*, A fourth-order compact finite difference scheme for the quantum Zakharov system that perfectly inherits both mass and energy conservation, Applied Numerical Mathematics, 178 (2022) 1-24.

Jiyong Li, Tingchun Wang*, Optimal point-wise error estimate of two conservative fourth-order compact finite difference schemes for the nonlinear Dirac equation, Applied Numerical Mathematics, 162 (2021) 150-170.

Feng Liao, Fazhan Geng, Tingchun Wang*, A mass and energy conservative fourth-order compact difference scheme for the Klein-Gordon-Dirac equations, Calcolo, 59(1) (2021) DOI: 10.1007/s10092-021-00452-3.

Teng Zhang, Tingchun Wang*, Optimal error estimates of fourth-order compact finite difference methods for the nonlinear Klein-Gordon equation in the nonrelativistic regime, Numerical Methods for Partial Differential equations, 37(3) (2020) DOI: 10.1002/num.22664.

Feng Liao,Luming Zhang,Tingchun Wang*,  Two energy-conserving and compact finite difference schemes for two-dimensional Schrödinger-Boussinesq equations, Numerical Algorithms, 85 (2020) 1335-1363.

Tingchun Wang*, Jialing Wang, Boling Guo, Two completely explicit and unconditionally convergent Fourier pseudo-spectral methods for solving the nonlinear Schrödinger equation,Journal of Computational Physics, 404 (2020) 109116. 

Linghua Kong*, Tingchun Wang, Liqun Kuang, Efficient Numerical Schemes for Two-dimensional Ginzburg-Landau Equation in Superconductivity, Discrete and Continuous Dynamical Systems Series B, 24 (2019) 6325-6347. 

Feng Liao, Luming Zhang, Tingchun Wang*, Unconditional L∞ convergence of a conservative compact finite difference scheme for the N-coupled Schrödinger-Boussinesq equations, Applied Numerical Mathematics, 138(2019) 54-77.

Xuanxuan Zhou, Tingchun Wang, Luming Zhang*, Two numerical methods for the Zakharov-Rubenchik equations, Advances in Computational Mathematics, 45(3) (2018) 1163-1184.

Tingchun Wang*, Xiaofei Zhao, Mao Peng, Peng Wang, Efficient and accurate numerical methods for long-wave short-wave interaction equations in the semiclassical limit regime, Journal of Computational Mathematics, 37(2019) 647-667.

Tingchun Wang*, Xiaofei Zhao, Unconditional L∞ convergence of two compact conservative finite difference schemes for the nonlinear Schrödinger equation in multi-dimensions, Calcolo, DOI: 10.1007/s10092-018-0277-0. 

Tingchun Wang*, Boling Guo, Unconditional convergence of linearized implicit finite difference method for the 2D/3D Gross-Pitaevskii equation with angular momentum rotation, SCIENCE CHINA Mathematics, 62(9) (2019) 1669-1686.

Tingchun Wang*, Jiaping Jiang, Xiang Xue, Unconditional and optimal H1 error estimate of a Crank-Nicolson finite difference scheme for the Gross-Pitaevskii equation with an angular momentum rotation term, Journal of Mathematical Analysis and Applications, 459 (2) (2018) 945-958.

Tingchun Wang*, Xiaofei Zhao, Jiaping Jiang, Unconditional and optimal H2-error estimates of two linear and conservative finite difference schemes for the Klein-Gordon-Schrödinger equation in high dimensions,  Advances in Computational Mathematics,44 (2018) 477-503.

Jialin Hong, Lihai Ji, Linghua Kong, Tingchun Wang*, Optimal error estimate of a compact scheme for nonlinear Schrödinger equation, Applied Numerical Mathematics, 120 (2017) 68-81.

Tingchun Wang*, A linearized, decoupled and energy-preserving compact finite difference scheme for the coupled nonlinear Schrodinger equations, Numerical Methods for Partial Differential Equations, 33(3) (2017) 840–867. 

Tingchun Wang*, Uniform pointwise error estimates of semi-implicit compact finite difference methods for the nonlinear Schrodinger equation perturbed by wave operator, Journal of Mathematical Analysis and Application, 422 (2015) 286-308. 

Tingchun Wang*, Xiaofei Zhao, Optimal l∞ error estimates of finite difference methods for the coupled Gross-Pitaevskii equations in high dimensions, SCIENCE CHINA Mathematics, 57 (10) (2014)  2189-2214.  

Tingchun Wang*, Optimal Point-Wise Error Estimate of a Compact Difference Scheme for the Coupled Gross-Pitaevskii Equations in One Dimension, Journal of Scientific Computing, 59 (1) (2014) 158-186. 

Tingchun Wang*, Optimal Point-Wise Error Estimate of a Compact Difference Scheme for the Coupled Nonlinear Schrödinger Equations, Journal of Computational Mathematics, 32 (1) (2014) 58–74.  

Tingchun Wang*, Optimal point-wise error estimate of a compact difference scheme for the Klein-Gordon-Schrödinger equation, Journal of Mathematical Analysis and Application,412 (2014) 155-167.

Yanan Zhang, Zhizhong Sun*, Tingchun Wang, Convergence analysis of linearized Crank-Nicolson scheme for the two-dimensional complex Ginzburg-Landau equation, Numerical Methods for Partial Differential Equations, 29 (5) (2013),1487-1503.  

Tingchun Wang*, Boling Guo, Qiubin Xu, Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions, Journal of Computational Physics, 243 (2013) 382-399.

Honglin Liao, Zhizhong Sun*, Hansheng Shi, Tingchun Wang, Convergence of compact ADI method for solving linear Schrödinger equations, Numerical methods for Partial Differential Equations, 28 (2012) 1598-1619.  

王廷春*, 郭柏灵, 一维非线性Schrödinger 方程的两个无条件收敛的守恒紧格式, 中国科学:数学, 41(2011) 207-233.  

Tingchun Wang*, Maximum error bound of a linearized difference scheme for coupled nonlinear Schrödinger equation, Journal of Computational and Applied mathematics, 235 (2011) 4237-4250.  

Shengfu Deng, Boling Guo, Tingchun Wang*, Travelling wave solutions of ageneralized Camassa-Holm-Degasperis-Procesi equation, SCIENCE CHINA Mathematics, 54 (2011) 555-572.  

Tingchun Wang*, Boling Guo, Analysis of some finite difference schemes for two-dimensional Ginzeburg-landau equation, Numerical methods for Partial Differential Equations, 27 (2010) 1340-1363.  

Tingchun Wang*, Boling Guo, A robust semi-explicit difference scheme for the Kuramoto-Tsuzuki equation, Journal of Computational and Applied mathematics, 233 (2009) 878-888.   

Tingchun Wang*, Tao Nie, Luming Zhang, Analysis of a symplectic difference scheme for a coupled nonlinear Schrödinger system, Journal of Computational and Applied Mathematics, 231 (2009) 745-759.  

Tingchun Wang*, Tao Nie, Luming Zhang, Fangqi Chen, Numerical simulation of nonlinearly coupled Schrödinger systems: a linearly uncoupled finite difference scheme, Mathematics and Computers in Simulation, 79 (2008) 607-621.  

Tingchun Wang*, Juan Chen, Luming Zhang, Conservative difference methods for the Klein-Gordon-Zakharov equations, Journal of Computational and Applied Mathematics, 205 (2007) 430-452.   


王廷春

教授 博士生导师 硕士生导师

毕业院校: Nanjing University of Aeronautics and Astronautics

学历: 博士研究生毕业

学位: 博士学位

邮箱 : wangtingchun@nuist.edu.cn

2019 南京信息工程大学·网络信息中心 NUIST备80008
访问量: 手机版 English 南京信息工程大学

最后更新时间: ..