王玉莹Yuying Wang

副教授

 硕士生导师
学位:理学博士学位
性别:男
毕业院校:北京师范大学
学历:博士研究生毕业
在职信息:在岗
所在单位:大气物理学院

通讯/办公地址:

邮箱:

个人简介

教育背景:

2014/09–2019/06:   博士 北京师范大学, 全球变化与地球系统科学研究院,导师:李占清,研究方向:外场观测研究气溶胶物理化学特性

2017/12–2018/12:   国家公派联培博士生 美国得州农机大学(Texas A&M University),大气科学系,导师:张人一,研究内容:实验室研究气溶胶物理化学特性

2010/09 - 2014/06:  本科    南京信息工程大学,大气物理学院,大气物理专业

 

工作经历:

2020/07-至今 南京信息工程大学 副教授、硕士生导师(招生专业:大气物理学与大气环境(学硕)、资源与环境-气象工程(专硕))

2021/03-2022/03 南京信息工程大学 团委副书记(挂职)

2019/06-2020/06 南京信息工程大学 讲师

 

学术兼职:

《Frontiers in Earth Science 》、《Frontiers in Environmental Science》期刊编委

国家自然科学基金通讯评审专家

美国气溶胶研究协会(AAAR)会员

欧洲地球科学联合会(EGU)会员

Environmental Science & Technology、Atmospheric Chemistry and Physics、Journal of Geophysical Research-Atmosphere、npj Climate and Atmospheric Science、Atmospheric Measurement Techniques、Journal of Hydrology等期刊审稿人

 

荣誉获奖:

2022年11月 南京信息工程大学2022年招生宣传工作先进个人;

2021年10月 南京信息工程大学2021届本科毕业生优秀毕业论文(设计)优秀指导教师;

2019年7-8月 受邀获巴西圣保罗大学全额资助参加在该校举办的气溶胶高阶研讨会(Sao Paulo School of Advanced Science on Atmospheric aerosol);

2019年7月 第八届COAA大气、海洋及气候变化国际会议“Early-Career Presentation Award”;

2019年6月 北京师范大学优秀博士毕业生;

2014年6月 南京信息工程大学优秀本科毕业生。

 

科研项目:

[11] 2021.01-2023.12,国家自然科学基金青年科学基金项目,42005067,“城市大气中超细气溶胶老化增长潜势及其对云凝结核数浓度影响的研究”,主持;

[10] 2021.01-2025.12,国家自然科学基金重点项目,42030606,“长江三角洲地气环境变化对极端气象影响机理研究”,子课题负责人;

[9] 2021.01-2023.12, 国家自然科学基金重大研究计划集成项目,92044303,"中国大气复合污染综合数据共享平台研发", 骨干;

[8] 2020.09-2021.12,中国气象科学研究院委托项目,“气溶胶星-地监测产品检验和空气污染云降水湿清除过程研究(一期)”,主持;

[7] 2020.08-2022.08,遥感科学国家重点实验室开放基金项目,“南京北郊气溶胶吸湿增长对其直接辐射效应的影响研究”,主持;

[6] 2020.07-2020.12,某公司委托项目,“基于上海地区颗粒物吸湿特性测量结果的应用研究”,主持;

[5] 2019.09-2022.09,南京信息工程大学人才启动项目,“超大城市超细气溶胶粒子来源及气溶胶液态水含量的观测研究”,主持;

[4] 2018-2022,国家重点研发计划,2017YFC1501702,“超大城市边界层气溶胶垂直结构观测及试验研究”,参与;

[3] 2017-2020,国家自然科学基金青年科学基金项目,41705125,“有机气溶胶对云凝结核活化影响的模拟研究”,参与;

[2] 2017-2020,国家自然科学基金面上项目,41675141,“华北区域大气细粒子混合态及老化对其核化效率的影响研究”,参与;

[1] 2016-2019,国家自然科学基金面上项目,41575143,“基于卫星和地面观测的中国东部地区气溶胶气候效应评估研究”,参与。


研究方向:

1、大气物理与环境:主要包括空气污染形成机制、气溶胶理化特性观测、气溶胶-边界层-云-降水相互作用等;

2、大气成分遥感探测:主要包括激光雷达、微波、卫星探测等;


近期主要论著:

2022年

[40] Wu, Y., Wang, Y.*, Zhou, Y., et al.: The wet scavenging of air pollutants through artificial precipitation enhancement: a case study in the Yangtze River Delta, Frontiers in Environmental Science, https://doi.org/10.3389/fenvs.2022.1027902, 2022.

[39] Wang, Q., Zhang, H., Yang, S., Chen, Q., Zhou, X., Xie, B., Wang, Y., Shi, G., and Wild, M.: An assessment of land energy balance over East Asia from multiple lines and the roles of Tibet Plateau, aerosols, and clouds, Atmos. Chem. Phys. Discuss., 2022, 1-29, https://doi.org/10.5194/acp-2022-451, 2022.

[38] Wang, Y., Henning, S., Poulain, L., Lu, C., Stratmann, F., Wang, Y., Niu, S., Pöhlker, M. L., Herrmann, H., and Wiedensohler, A.: Aerosol activation characteristics and prediction at the central European ACTRIS research station Melpitz, Germany, Atmos. Chem. Phys. Discuss., 2022, 1-56, https://doi.org/10.5194/acp-2022-427, 2022.

[37] Wang, Y.*, Hu, R., Wang, Q., Li, Z., Cribb, M., Sun, Y., Song, X., Shang, Y., Wu, Y., Huang, X., and Wang, Y.: Different effects of anthropogenic emissions and aging processes on the mixing state of soot particles in the nucleation and accumulation modes, Atmospheric Chemistry and Physics, 22, 14133–14146, https://doi.org/10.5194/acp-22-14133-2022, 2022.

[36] Zhang, R., Wang, Y.*, Li, Z., Wang, Z., Dickerson, R. R., Ren, X., He, H., Wang, F., Gao, Y., Chen, X., Xu, J., Cheng, Y., and Su, H.: Vertical profiles of cloud condensation nuclei number concentration and its empirical estimate from aerosol optical properties over the North China Plain, Atmospheric Chemistry and Physics, 22, 14879-14891, https://doi.org/10.5194/acp-22-14879-2022, 2022.

[35] 高颖, 王玉莹*, 李占清, 金筱艾, 王靖凌, 胡嵘, 曾思琪, 张睿, 陈曦, 许嘉璐. 北京和邢台新粒子生成的差别及其对CCN活性的影响[J]. 大气科学. 46(5): 1087−1097, https://doi.org/10.3878/j.issn.1006-9895.2107.21013,2022.

[34] Cai, Z., Li, Z., Li, P., Li, J., Sun, H., Gao, X., Peng, Y., Wang, Y., Zhang, D., and Ren, G.: Vertical Distributions of Aerosol and Cloud Microphysical Properties and the Aerosol Impact on a Continental Cumulus Cloud Based on Aircraft Measurements From the Loess Plateau of China, Frontiers in Environmental Science, 9, https://doi.org/10.3389/fenvs.2021.808861,2022.

[33] Du, W., Wang, W., Liu, R., Wang, Y., Zhang, Y., Zhao, J., Dada, L., Xie, C., Wang, Q., Xu, W., Zhou, W., Zhang, F., Li, Z., Fu, P., Li, J., Kangasluoma, J., Wang, Z., Ge, M., Kulmala, M., and Sun, Y.: Insights into vertical differences of particle number size distributions in winter in Beijing, China, Science of The Total Environment, 802, 149695, https://doi.org/10.1016/j.scitotenv.2021.149695, 2022.

2021年

[32] Lv, M., Li, Z., Jiang, Q., Chen, T., Wang, Y., Hu, A., Cribb, M., Cai, A.: Contrasting Trends of Surface PM2.5, O3, and NO2 and Their Relationships with Meteorological Parameters in Typical Coastal and Inland Cities in the Yangtze River Delta. International Journal of Environmental Research and Public Health18, 12471. https://doi.org/10.3390/ijerph182312471,2021.

[31] Wang, Y., Wang, J., Li, Z., Jin, X., Sun, Y., Cribb, M., Ren, R., Lv, M., Wang, Q., Gao, Y., Hu, R., Shang, Y., and Gong, W.: Contrasting aerosol growth potential in the northern and central-southern regions of the North China Plain: Implications for combating regional pollution, Atmospheric Environment, 267, 118723, https://doi.org/10.1016/j.atmosenv.2021.118723, 2021.

[30] Jin, X., Li, Z., Wu, T., Wang, Y., Cheng, Y., Su, T., Wei, J., Ren, R., Wu, H., Li, S., Zhang, D., and Cribb, M.: The different sensitivities of aerosol optical properties to particle concentration, humidity, and hygroscopicity between the surface level and the upper boundary layer in Guangzhou, China, Science of the Total Environment, 150010, 2021.

[29] Wu, H., Li, Z., Jiang, M., Liang, C., Zhang, D., Wu, T., Wang, Y., and Cribb, M.: Contributions of traffic emissions and new particle formation to the ultrafine particle size distribution in the megacity of Beijing, Atmosperic Environment, 262, 118652, https://doi.org/10.1016/j.atmosenv.2021.118652, 2021.

[28] Ren, R., Li, Z., Yan, X., Wang, Y., Wu, H., Cribb, M., Wang, W., Jin, X., Li, Y., Zhang, D.,: Measurement report: The effect of aerosol chemical composition on light scattering due to the hygroscopic swelling effect, Atmospheric Chemistry and Physics, 21, 9977-9994, https://doi.org/10.5194/acp-21-9977-2021, 2021.

[27] Li, Y., Ji, Y., Zhao, J., Wang, Y., Shi, Q., Peng, J., Wang, Y., Wang, C., Zhang, F., Wang, Y., Seinfeld, J. H., and Zhang, R.: Unexpected Oligomerization of Small α-Dicarbonyls for Secondary Organic Aerosol and Brown Carbon Formation, Environmental Science & Technology, 55, 8, 4430–4439,https://doi.org/10.1021/acs.est.0c08066, 2021.

[26] Wang, Y., Li, Z., Wang, Q., Jin, X., Yan, P., Cribb, M., Li, Y., Yuan, C., Wu, H., Wu, T., Ren, R., and Cai, Z.: Enhancement of secondary aerosol formation by reduced anthropogenic emissions during Spring Festival 2019 and enlightenment for regional PM2.5 control in Beijing, Atmospheric Chemistry and Physics, 21, 915-926, https://doi.org/10.5194/acp-21-915-2021, 2021.

[25] Du, W., Dada, L., Zhao, J., Chen, X., Daellenbach, K. R., Xie, C., Wang, W., He, Y., Cai, J., Yao, L., Zhang, Y., Wang, Q., Xu, W., Wang, Y., Tang, G., Cheng, X., Kokkonen, T. V., Zhou, W., Yan, C., Chu, B., Zha, Q., Hakala, S., Kurppa, M., Järvi, L., Liu, Y., Li, Z., Ge, M., Fu, P., Nie, W., Bianchi, F., Petäjä, T., Paasonen, P., Wang, Z., Worsnop, D. R., Kerminen, V., Kulmala, M., and Sun, Y.: A 3D study on the amplification of regional haze and particle growth by local emissions, npj Climate and Atmospheric Science, 4, 4, https://doi.org/10.1038/s41612-020-00156-5, 2021.

2020

[24] Benish S. E., He H., Ren X., Roberts S. J., Salawitch R. J., Li Z., Wang F., Wang Y., Zhang F., Shao M., Lu S., and Dickerson R. R.: Measurement report: Aircraft observations of ozone, nitrogen oxides, and volatile organic compounds over Hebei Province, China,  Atmospheric Chemistry and Physics, 20, 14523–14545, https://doi.org/10.5194/acp-20-14523-2020, 2020.

[23] Wu H., Li Z.*, Li H., Luo K.*, Wang Y., Yan P., Hu F., Zhang F., Sun Y., Shang D., Liang C., Zhang D., Wei J., Wu T., Jin X., Fan X., Cribb M., Fischer M. L., Kulmala M., and Petäjä T.: The impact of the atmospheric turbulence development tendency on new particle formation: a common finding on three continents, National Science Review, https://doi.org/10.1093/nsr/nwaa157, 2020.(IF=16.693

[22] Wu T., Li Z.*, Chen J., Wang Y., Wu H., Jin X., Liang C., Li S., Wang W., Cribb M.: Hygroscopicity of Different Types of Aerosol Particles: Case Studies Using Multi-Instrument Data in Megacity Beijing, China. Remote Sensing, 12, 785, https://doi.org/10.3390/rs12050785, 2020.

[21] Fan X., Liu J., Zhang F.*, Chen L., Collins D., Xu W., Jin X., Ren J., Wang Y., Wu H., Li S., Sun Y., and Li Z.: Contrasting size-resolved hygroscopicity of fine particles derived by HTDMA and HR-ToF-AMS measurements between summer and winter in Beijing: the impacts of aerosol aging and local emissions, Atmospheric Chemistry and Physics, 20, 915–929, https://doi.org/10.5194/acp-20-915-2020, 2020.

[20] Jin X., Wang Y.*, Li Z.*, Zhang F., Xu W., Sun Y., Fan X., Chen G., Wu H., Ren J., Wang Q., and Cribb M.: Significant contribution of organics to aerosol liquid water content in winter in Beijing, China, Atmospheric Chemistry and Physics, 20,901-914, https://doi.org/10.5194/acp-20-901-2020, 2020.

2019

[19] Wang Y., Niu S., Lv J.*, Lu C.*, Xu X., Wang Y., Ding J., Zhang H., Wang T., Kang B.: A new method for distinguishing unactivated particles in cloud condensation nuclei (CCN) measurements: Implications for aerosol indirect effect evaluation. Geophysical Research Letters, https://doi.org/10.1029/2019GL085379, 46(23), 14185-14194, 2019.

[18] Wang Y., Li Z.*, Zhang R., Jin X., Xu W., Fan X., Wu H., Zhang F., Sun Y., Wang Q., Cribb M. and Hu D.: Distinct Ultrafine‐and Accumulation‐Mode Particle Properties in Clean and Polluted Urban Environments, Geophysical Research Letters,  46 (19), 10918-10925, https://doi.org/10.1029/2019GL084047, 2019.

[17] Chen J., Li Z.*, Lv M., Wang Y.*, Wang W., Zhang Y., Wang H., Yan X., Sun Y. and Cribb M.: Aerosol hygroscopic growth, contributing factors, and impact on haze events in a severely polluted region in northern China, Atmospheric Chemistry and Physics, 19, 1327-1342, https://doi.org/10.5194/acp-19-1327-2019, 2019.

[16] Luo N., Shi W., Liang C., Li Z., Wang H., Zhao W., Zhang Y., Wang Y., Li Z. and Yan X.*: Characteristics of atmospheric fungi in particle growth events along with new particle formation in the central North China Plain, Science of Total Environment, 683, 389-398, https://doi.org/10.1016/j.scitotenv.2019.05.299, 2019.

[15] Wang Y.*, Dörner S., Donner S., Böhnke S., De Smedt I., Dickerson R.R., Dong Z., He H., Li Z., Li Z., Li D., Liu D., Ren X., Theys N., Wang Y., Wang Y., Wang Z., Xu H., Xu J. and Wagner T.: Vertical profiles of NO2, SO2, HONO, HCHO, CHOCHO and aerosols derived from MAX-DOAS measurements at a rural site in the central western North China Plain and their relation to emission sources and effects of regional transport, Atmospheric Chemistry and Physics, 19, 5417-5449, https://doi.org/10.5194/acp-19-5417-2019, 2019.

2018

[14] Wang Y., Li Z.*, Zhang Y., Du W., Zhang F., Tan H., Xu H., Fan T., Jin X., Fan X., Dong Z., Wang Q. and Sun Y.: Characterization of aerosol hygroscopicity, mixing state, and CCN activity at a suburban site in the central North China Plain, Atmospheric Chemistry and Physics, 18, 11739-11752, https://doi.org/10.5194/acp-18-11739-2018, 2018.

[13] Lv M., Wang Z., Li Z.*, Luo T., Ferrare R., Liu D., Wu D., Mao J., Wan B., Zhang F. and Wang Y.: Retrieval of Cloud Condensation Nuclei Number Concentration Profiles From Lidar Extinction and Backscatter Data, Journal of Geophysical Research: Atmospheres, 123, 6082-6098, https://doi.org/10.1029/2017JD028102, 2018.

[12] Fan T., Zhao C.*, Dong X., Liu X., Yang X., Zhang F., Shi C., Wang Y. and Wu F.: Quantify contribution of aerosol errors to cloud fraction biases in CMIP5 Atmospheric Model Intercomparison Project simulations, International Journal of Climatology, 38, 3140-3156, https://doi.org/10.1002/joc.5490, 2018.

[11] Wang G.*, Zhang F., Peng J., Duan L., Ji Y., Marrero-Ortiz W., Wang J., Li J., Wu C., Cao C., Wang Y., Zheng J., Secrest J., Li Y., Wang Y., Li H., Li N. and Zhang R.: Particle acidity and sulfate production during severe haze events in China cannot be reliably inferred by assuming a mixture of inorganic salts, Atmospheric Chemistry and Physics, 18, 10123-10132, https://doi.org/10.5194/acp-18-10123-2018, 2018.

[10] Ren J., Zhang F.*Wang Y., Collins D., Fan X., Jin X., Xu W., Sun Y., Cribb M. and Li Z.: Using different assumptions of aerosol mixing state and chemical composition to predict CCN concentrations based on field measurements in urban Beijing, Atmospheric Chemistry and Physics, 18, 6907-6921, https://doi.org/10.5194/acp-18-6907-2018, 2018.

[9] Fan T.*, Liu X.*, Ma P.L., Zhang Q., Li Z., Jiang Y., Zhang F., Zhao C., Yang X., Wu F. and Wang Y.: Emission or atmospheric processes? An attempt to attribute the source of large bias of aerosols in eastern China simulated by global climate models, Atmospheric Chemistry and Physics, 18, 1395-1417, https://doi.org/10.5194/acp-18-1395-2018, 2018.

[8] Zhou W., Zhao J., Ouyang B., Mehra A., Xu W., Wang Y., Bannan T.J., Worrall S.D., Priestley M., Bacak A., Chen Q., Xie C., Wang Q., Wang J., Du W., Zhang Y., Ge X., Ye P., Lee J.D., Fu P., Wang Z., Worsnop D., Jones R., Percival C.J., Coe H.* and Sun Y.*: Production of N2O5 and ClNO2 in summer in urban Beijing, China, Atmospheric Chemistry and Physics, 18, 11581-11597, https://doi.org/10.5194/acp-18-11581-2018, 2018.

[7] Zhang Y., Du W., Wang Y., Wang Q., Wang H., Zheng H., Zhang F., Shi H., Bian Y., Han Y., Fu P., Canonaco F., Prévôt A.S.H., Zhu T., Wang P., Li Z. and Sun Y.*: Aerosol chemistry and particle growth events at an urban downwind site in North China Plain, Atmospheric Chemistry and Physics, 18, 14637-14651, https://doi.org/10.5194/acp-18-14637-2018, 2018.

2017

[6] Wang Y., Zhang F.*, Li Z.*, Tan H., Xu H., Ren J., Zhao J., Du W. and Sun Y.:  Enhanced hydrophobicity and volatility of submicron aerosols under severe emission control conditions in Beijing, Atmospheric Chemistry and Physics, 17, 5239-5251, https://doi.org/10.5194/acp-17-5239-2017, 2017.

[5] Zhang F., Wang Y., Peng J., Ren J., Collins D., Zhang R., Sun Y., Yang X. and Li Z.*: Uncertainty in Predicting CCN Activity of Aged and Primary Aerosols, Journal of Geophysical Research: Atmospheres, 122, 11,723-11,736, https://doi.org/10.1002/2017JD027058, 2017.

[4] Li Y., Zhang F.*, Li Z.*, Sun L., Wang Z., Li P., Sun Y., Ren J., Wang Y., Cribb M. and Yuan C.: Influences of aerosol physiochemical properties and new particle formation on CCN activity from observation at a suburban site of China, Atmospheric Research, 188, 80-89, https://doi.org/10.1016/j.atmosres.2017.01.009, 2017.

[3] Du W., Zhao J., Wang Y., Zhang Y., Wang Q., Xu W., Chen C., Han T., Zhang F., Li Z., Fu P., Li J., Wang Z. and Sun Y.*: Simultaneous measurements of particle number size distributions at ground level and 260?m on a meteorological tower in urban Beijing, China, Atmospheric Chemistry and Physics, 17, 6797-6811, https://doi.org/10.5194/acp-17-6797-2017, 2017.

[2] Zhao J., Du W., Zhang Y., Wang Q., Chen C., Xu W., Han T., Wang Y., Fu P., Wang Z., Li Z. and Sun Y.*: Insights into aerosol chemistry during the 2015 China Victory Day parade: results from simultaneous measurements at ground level and 260?m in Beijing, Atmospheric Chemistry and Physics, 17, 3215-3232, https://doi.org/10.5194/acp-17-3215-2017, 2017.

2016

[1] Wang Q., Zhao J., Du W., Ana G., Wang Z., Sun L., Wang Y., Zhang F., Li Z., Ye X. and Sun Y.*: Characterization of submicron aerosols at a suburban site in central China, Atmospheric Environment, 131, 115-123, https://doi.org/10.1016/j.atmosenv.2016.01.054, 2016. 

 

发明专利:

吴红艳,曾敏,徐佳,王玉莹,姚义俊,刘斌,杭烨超 ,一种节能型多功能旋涂机,授权日期:2012-12-05,授权号:201220249303.3

 

个人学术主页: 

Researchgate: https://www.researchgate.net/profile/Wang-Yuying-2

Publons: https://publons.com/researcher/4070864/yuying-wang/

谷歌学术: https://scholar.google.com/citations?user=6zsHka4AAAAJ&hl=en&oi=sra

 

 本团队致力于大气-气溶胶-边界层-云综合实验观测研究(详见“教师博客”栏目中的“科研工作介绍”),每年招收硕士、博士研究生若干名,同时招收本科生参与科研项目。期待你的加入!


指导学生创新创业成果:

[8]项目:2022.5-2023.5,2022年省级大学生创新训练计划项目(重点项目) (本科生詹朴宁主持);

[7]项目:2022.4-2024.4,南京信息工程大学校级大学生创新创业训练计划项目两项(分别由本科生詹朴宁、陈佳徐主持);

[6]项目:2021.10-2022.10,2021年校级大创项目“互联网+”大赛、“挑战杯”系列竞赛专项项目两项(分别由本科生张睿、张寒主持);

[5] 获奖:2021年10月本科毕业生胡嵘、曾思琪同学荣获南京信息工程大学2021届优秀本科毕业论文二等奖,本科毕业生高颖荣获三等奖;

[4] 项目:2021.10-2022.10,南京信息工程大学大气物理学院双创I类竞赛项目(本科生张睿主持);

[3] 项目:2021.5-2022.5,南京信息工程大学校级大学生创新创业训练计划项目(本科生廖文晗主持);

[2] 获奖:2020年12月本科生(陈曦)的作品《中国气象数据的分析处理》荣获2020年“领航杯”江苏省大学生信息技术应用能力比赛三等奖;

[1] 项目:2020.4-2021.4,2020年省级大学生创新训练计划项目(202010300056Y) (本科生高颖、曾思琪主持)。


指导在读学生:

[研究生] 赏益(博士)、王玉祥(硕士)、黄鑫(硕士)、吴懿璇(硕士)、宋晓瑞(硕士)

[本科生] 大物院:张寒、吕鑫、陈曦、张睿、许嘉璐、潘子文、王千芊;

             长望学院:徐天殊; 

指导已毕业学生:

[2022年] 本科生:崔晨(长望)    毕业去向:兰州大学(研究生)

                            杨子谦(长望) 毕业去向:北京市某区气象局

[2021年] 本科生:胡嵘(大物)    毕业去向:北京师范大学(研究生,保送)

                            曾思琪(大物) 毕业去向:中科院大气物理研究所(研究生,保送)

                            高颖(大物)    毕业去向:南京大学(研究生,保送)

[2020年] 本科生:王靖凌(大物)  毕业去向:日本名古屋大学(研究生)



 

教育经历

[1] 2017.12-2018.12
美国得州农机大学(Texas A&M University) | 大气科学 | 国家公派联培博士生
[2] 2010.9-2014.6
南京信息工程大学 | 大气科学(大气物理方向) | 大学本科毕业 | 理学学士
[3] 2014.9-2019.6
北京师范大学 | 全球环境变化 | 博士研究生毕业 | 理学博士

工作经历

[1] 2021.3-至今
团委 | 南京信息工程大学  | 副书记 
[2] 2020.6-至今
大气物理学院 | 南京信息工程大学 
[3] 2019.7-2020.5
大气物理学院 | 南京信息工程大学 

研究方向

[1]气溶胶吸湿性、活化性,空气污染,大气-气溶胶-边界层-云相互作用

团队成员

团队名称:AABC科学团队

团队介绍:

本团队致力于通过地面、飞机、卫星遥感观测,并结合数值模式,对大气-气溶胶-边界层-云(Atmosphere-Aerosol-Boundary layer-Cloud,AABC)相互作用开展研究。