已经得到个称赞     给我点赞
  • 所在单位:计算机学院、网络空间安全学院(数字取证教育部工程研究中心、公共计算机教学部)
  • 性别:
  • 职称:副教授
  • 学科:计算机科学与技术
论文成果
当前位置: 中文主页 >> 科学研究 >> 论文成果
Vehicle Detection Based on Improved Yolov11 and Attention Mechanism
  • 点击次数:
  • DOI码:10.15680/IJIRCCE.2025.1304005
  • 发表刊物:IJIRCCE
  • 关键字:Vehicle Detection,YOLOV11,Attention Mechanism,Deep Learning,Object Detection
  • 摘要:In this paper, an improved vehicle detection method based on YOLOv11 and an attention mechanism is
    proposed. By optimizing the network structure and integrating the attention mechanism, the accuracy and efficiency of
    vehicle detection are significantly enhanced. The experimental results show that the proposed method outperforms the
    traditional YOLOv11 in various scenarios, providing a more reliable solution for intelligent transportation systems and
    related fields.
  • 第一作者:文学志
  • 论文类型:期刊论文
  • 通讯作者:Ka Souleymane
  • 卷号:13
  • 期号:4
  • 是否译文:
  • 发表时间:2025-04-22
  • 文学志_Vehicle Detection Based on Improved Yolov11 and Attention Mechanism.pdf 下载[] 次