熊艳琴

教授

 硕士生导师
性别:女
所在单位:数学与统计学院(公共数学教学部)

邮箱:yqxiong@nuist.edu.cn

个人简介

学习与工作经历:

教育经历:


2013/09-2016/06   上海师范大学,数理学院,应用数学专业,博士;

2010/09-2013/06   上海师范大学,数理学院,应用数学专业,硕士。


工作经历:


2016/06-2019/06 南京信息工程大学,数学与统计学院,讲师

2019/07-2022/06  南京信息工程大学,数学与统计学院,副教授

2022/06-至今   南京信息工程大学,数学与统计学院,教授


境外交流:


2014/09/15-2014/10/15 在 Maribor 大学访问一个月;


2015/07/12-2015/08/11 在 Maribor 大学访问一个月;


2018/10/11-2019/04/11 在香港理工大学访问半年。


社会兼职:

2014年-至今,美国《数学评论》(Mathematical Reviews)评论员

2020年-至今,德国《数学文摘》评论员

研究领域

极限环的 Hopf 分支、同异宿分支、Poincare 分支;

周期函数的临界周期分支;

不变环面的存在性及中心焦点问题等.


项目及科研

项目

1. 主持江苏省青年基金 项目名称:几类微分系统的支研究与应用,201709-202009, 20 万,结题

2. 主持 江苏省省高校基金 几类非光滑微分系统的分支问题 201707-201907, 5 万,已结题

3. 主持 国家青年基金 项目名称:几类非线性系统的定性分析与极限环分支问题, 201801-202012,23 万,已结题

4. 主持江苏省面上项目 近可积微分系统的极限环分支研究,202207-202506,10 万,在研

5. 主持 国家面上项目:近可积系统的Melnikov函数零点及极限环分支研究,2024-2027,在研

   

科研成果

2022

 1. Xiaolei Zhang, Yanqin Xiong, The number of limit cycles by perturbing a piecewise linear system with three zones, Communications on Pure and Applied Analysis, 2022.

2021

1. Yanqin Xiong, Maoan Han, Dongmei Xiao, The maximal number of limit cycles bifurcating from a Hamiltonian triangle in quadratic systems, Journal of Differential Equations 280 (2021) 139-178.

2. Yanqin Xiong, Maoan Han, Limit cycles appearing from a generalized heteroclinic loop with a cusp and a nilpotent saddle, Journal ofDifferentialEquations 303(2021)575–607.

3. Yanqin Xiong, Cheng Wang, Limit cycle bifurcations of planar piecewise differential systems with three zones, Nonlinear Analysis: Real World Applications 61 (2021) 103333.

2020

1. Yanqin Xiong and Maoan Han, Limit cycle bifurcations in discontinuous planar systems with multiple lines, Journal of Applied Analysis and Computation 10 (2020) 361-377.

2. Yanqin Xiong and Shiping Lu, Quasi-homogeneous polynomial differential systems having a center at the origin, Applied Mathematics Letters 103 (2020) 106167.

3.  Y. Xiong and M. Han, Limit cycle bifurcations by perturbing a class of planar quintic vector fields, Journal of Differential Equations 269 (2020)10964-10994.

4. Y. Xiong, R. Cheng, N. Li, Limit Cycle Bifurcations in Perturbations of a Reversible Quadratic System with a Non-rational First Integral, Qualitative Theory of Dynamical Systems (2020) 19:97 .

5. Y. Xiong, M. Han, A note on the expansion of the first order Melnikov function near a class of 3-polycycles, Journal of Nonlinear Modeling and Analysis 2 (2020) 125-130.

2019

1. Yanqin Xiong and Jianqiang Hu, Limit cycle bifurcations in perturbations of planar piecewise smooth systems with multiply lines of critical points, J. Math. Anal. Appl. 474 (2019) 194–218.

2. Yanqin Xiong and Jianqiang Hu, A class of reversible quadratic systems with piecewise polynomial perturbations, Applied Mathematics and Computation 362 (2019) 124527.

2018 

1. Yanqin Xiong, Limit cycle bifurcations by perturbing non-smooth Hamiltonian systems with 4 switching lines via multiple parameters, Nonlinear Analysis: Real World Applications 41 (2018) 384-400.

2. Yanqin Xiong* and Tonghua Zhang, A class of quadratic reversible systems with a center of genus one, Chaos, Solitons and Fractals 114 (2018) 119-129.

3.  Yanqin Xiong, Jianqiang hu*, Shimin Li, and Jingzheng Li, Center problem for quasi-homogeneous polynomial systems with a given weight degree, 28 (2018) 1850174 (10 pages).

2017 年

1. Yanqin Xiong, Maoan Han* and Valery G. Romanovski, The Maximal Number of Limit Cycles in Perturbations of Piecewise Linear Hamiltonian Systems with Two Saddles, International Journal of Bifurcation and Chaos 27 (2017) 1750126 (14 pages).

2016 

1.  Yanqin Xiong, Maoan Han* and Dongmei Xiao, Limit cycle bifurcations by perturbing a quadratic integrable system with a triangle, Journal of Differential Equations (2016).

2. Yanqin Xiong and Manan Han*, Planar quasi-homogeneous polynomial systems with a given weight degree, Discrete and Continuous Dynamical Systems 36 (2016) 4015-4025.

3.  Yanqin Xiong*, The number of limit cycles in perturbations of polynomial systems with multiple circles of critical points, Journal of Mathematical Analysis and Applications 440 (2016) 220239.

4.  Yanqin Xiong*, Limit cycle bifurcations by perturbing a piecewise hamiltonian system with a double homoclinic loop, International Journal of Bifurcation and Chaos 26 (2016) 1650103 (16 pages).

2015 

1.  Yanqin Xiong*, Limit cycle bifurcations by perturbing piecewise smooth hamiltonian systems with multiple parameters, Journal of Mathematical Analysis and Applications 421 (2015) 260-275.

2. Yanqin Xiong and Maoan han*, Limit cycles near a homoclinic loop by perturbing a class of integrable systems, Journal of Mathematical Analysis and Applications 429 (2015) 814-832.

3.  Yanqin Xiong*, Limit cycle bifurcations by perturbing a hamiltonian system with a cuspidal loop of order m, International Journal of Bifurcation and Chaos 25 (2015) 1550083 (13pages).

4. Yanqin Xiong, Maoan Han* and Yong Wang, Center problems and limit cycle bifurcations in a class of quasi-homogeneous systems,International Journal of Bifurcation and Chaos 25 (2015) 1550135 (11 pages).

5. Yanqin Xiong and Maoan Han*, Limit cycle bifurcations near homoclinic and heteroclinic loops via stability-changing of a homoclinic loop, Chaos, Solitons & Fractals 78 (2015) 107-117.

2014 

1. Yanqin Xiong and Maoan Han*, New lower bounds for the hilbert number of polynomial systems of lienard type, Journal of Differential Equations 257 (2014) 2565-2590.

2. Yanqin Xiong*, Bifurcation of limit cycles by perturbing a class of hyper-elliptic hamiltonian systems of degree five, Journal of Mathematical Analysis and Applications 411 (2014) 559-573.

3. Yanqin Xiong and Maoan han*, Limit cycle bifurcations in a class of perturbed piecewise smooth systems, Applied Mathemiatics and Computation 242 (2014) 47-64.

4. Yanqin Xiong and maoan han*, On the limit cycle bifurcation of a polynomial system  from a global center, Analysis and Applications 12 (2014) 251-268.

2013 

1. Xiaona Kong and Yanqin Xiong*, Limit cycle bifurcations in a class of quintic z2-equivariant polynomial systems, Nonlinear Dynamics 73 (2013) 1271-1281.

2. Yanqin Xiong* and Hui Zhong, The number of limit cycles in a  z2-equivariant  lienard system,International Journal of Bifurcation and Chaos 23 (2013) 1350085 (17 pages).


工作经历

暂无内容

研究方向

[1]微分方程定性理论,极限环分支,Hopf 分支,同宿、异宿分支,中心焦点问题

团队成员

暂无内容