|
个人信息Personal Information
教师拼音名称:Zhang Yi
所在单位:大气科学学院
学历:博士研究生毕业
性别:男
联系方式:邮箱:yizhang@nuist.edu.cn
学位:理学博士学位
在职信息:在岗
毕业院校:中国科学院大学大气物理研究所
学科:气象学
- 基本信息
- 个人简介
- 近期主要论著
- 近期科研项目
-
研究招生方向和专业背景
诚邀大气科学类专业及跨学科专业背景(计算机科学、软件工程、人工智能等)学生报考
1. 地球系统建模方法和模式发展技术研究
2. 数值模式评估方法及评估诊断研究
3. 天气和气候模式的应用研究
4. 高性能计算(HPC)-人工智能(AI)-数值模式(MODEL)交叉研究
工作经历
2025/06至今 南京信息工程大学大气科学学院 教授(全职)
2023/02-2025/05 南京信息工程大学北京研究院 教授(兼职)
2022/02-2025/05 PIESAT Information Technology Co., Ltd.首席科学家
2017/12-2022/02 中国气象科学研究院气候系统研究所 副研究员 (硕士生导师)
2016/08-2016/10 德国马普气象研究所 访问学者
2015/01-2017/12 中国气象科学研究院气候系统研究所 助理研究员
从事多尺度天气-气候模拟研究、数值模式发展和评估改进研究、气候系统云-降水过程研究等。2017年评为中国气象科学研究院副研究员。2021年12月入选国家高层次青年人才计划。2022年2月起,任科创板首批上市企业—PIESAT首席科学家,并于2023年2月兼任南京信息工程大学客座教授。2025年6月加入南京信息工程大学大气科学学院。研究不仅在科学层面解决了多个关键问题,还通过工程化实现提升了成果的实用性与可扩展性。发展的模式已广泛应用于科学研究、气象行业服务及教育教学等。代表性成果:
1. 创新发展三维非静力大气动力框架算法。在此基础上长期持续发展了一个支持天气-气候、全球-区域一体化模拟预测的大气模式系统。实现具备全球1–5公里分辨率、风暴解析能力的非静力大气模拟,支持可变分辨率模拟。
2. 系统理解并揭示了复杂地形区域云降水与大气环流之间的多尺度相互作用机制,促进在东亚区域的数值模式性能改进与评估。
3. 融合高性能计算与人工智能技术,探索千米尺度模式的跨学科集成创新与应用。
模式发展:https://github.com/grist-dev/GRIST
发表论文(本人加粗,*通信作者,#共同一作,红字为代表性研究)
2025
55. Cheng, X., X. Rong*, Y. Zhang, Y. Wang, J. Li, and J. Xu, (2025), Climatological characteristics of tropical cyclones simulated in the global-regional integrated forecasting system (GRIST) model. Climate Dynamics, 63(11), 420.doi:10.1007/s00382-025-07916-0.
54. Kai Xu, Maoxue Yu, Yuhu Chen, Jie Gao, Shuang Wang, Jiaying Song, Xiaohui Duan, Junlin Wei, Jiangfeng Yu, Hailong Liu∗, Jinrong Jiang∗, Yi Zhang∗, Pengfei Lin∗, Tianyi Wang, Pengfei Wang, Weipeng Zheng, Jingwei Xie, Jiakang Zhang, Zilu Liu, Xiaoyu Jin, Jilin Wei, Qixin Chang, Qingxia Lin, Yanzhi Zhou, Yiwen Li, Weiguo Liu, Wei Xue, Haohuan Fu, Yue Yu, Xuebin Chi, Lixin Wu. 2025, Kilometer-Scale AI-Powered and Performance-Portable Earth System Model (AP3ESM) to Achieve Year-Scale Simulation Speed on Heterogeneous Supercomputers. SC25: International Conference for High Performance Computing, Networking, Storage and Analysis (CCF-A), Accepted. (2025年戈登贝尔气候建模奖决赛入围作品)
53. Chen, T.#, Y. Zhang#*, Y. Wang, and W. Yuan, Impact of Lateral Boundary Flows on Regional Convection-Permitting Simulations over the Tibetan Plateau: A Global-Regional Integrated Modeling Study. Journal of Geophysical Research-Atmospheres, 2025. (GRIST首个区域降尺度应用,及全球-区域千米尺度模拟对比研究)
52. Duan, X.#, Y. Zhang*#, K. Xu#, H. Fu, B. Yang, Y. Wang, Y. Han, S. Chen, Z. Zhou, C. Wang, D. Huang, H. An, X. Ju, H. Huang, Z. Liu, W. Xue*, W. Liu*, B. Yan, J. Hou, M. Yu, W. Chen, J. Li, Z. Jing, H. Liu*, and L. Wu, 2025: An AI-Enhanced 1km-Resolution Seamless Global Weather and Climate Model to Achieve Year-Scale Simulation Speed using 34 Million Cores. Proceedings of the 30th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming, Association for Computing Machinery, 524–538.(基于GRIST的首个全球1km尺度模拟和可扩展性测试)
51. Fu, Z., Y. Zhang*, X. Li, C. Zhu, H. Liu, X. Rong, and C. Li, (2025), Intercomparison of two model climates simulated by a unified weather-climate model system (GRIST), part II: Madden–Julian oscillation. Climate Dynamics, 63(1), 55. https://doi:10.1007/s00382-024-07527-1.
50. Zhou, Y. H., R. C. Yu, Y. Zhang*, J. Li, and H. M. Chen, 2025: Sensitivity of a kilometer-scale variable-resolution global nonhydrostatic model to microphysics schemes in simulating a mesoscale convective system. Adv. Atmos. Sci., 42(7), 1333−1348, https://doi.org/10.1007/s00376-024-4246-z.
49. 郜婕,容新尧,张祎*,付振,林鹏飞. 2025. 基于ESMF/NUOPC耦合框架的GRIST-WW3气-浪耦合模式及其数值模拟初探. 气象学报.
2024
48. Fu, Z., Y. Zhang*, X. Li, and X. Rong, (2024), Intercomparison of two model climates simulated by a unified weather-climate model system (GRIST), part I: mean state. Climate Dynamics, 62(7), 6273-6291.https://doi:10.1007/s00382-024-07205-2.
47. Chen, S., Y. Zhang*, Y. Wang, Z. Liu, X. Li, and W. Xue, (2024), Mixed-precision computing in the GRIST dynamical core for weather and climate modelling. Geosci. Model Dev., 17(16), 6301-6318.https://doi:10.5194/gmd-17-6301-2024.
46. Li, X., W. Chu, Y. Zhang*, and Y. Wang, (2024), Extending a dry-environment convection parameterization to couple with moist turbulence and a baseline evaluation in the GRIST model. Quarterly Journal of the Royal Meteorological Society, 150(763), 3368-3384.doi:https://doi.org/10.1002/qj.4763.
45. Zhang, Y.*, Z. Liu, Y. Wang, and S. Chen, (2024), Establishing a limited-area model based on a global model: A consistency study. Quarterly Journal of the Royal Meteorological Society, 150(764), 4049-4065.doi:https://doi.org/10.1002/qj.4804. (基于全球模式发展的区域模式及一致性研究)
44. 李晓涵, 林岩銮*, 张祎, 彭新东. 2024: 双羽对流参数化方案在CIESM模式中的应用及对模拟气候的影响. 气象学报. https://DOI:10.11676/qxxb2024.20230178.
43. 张萌, 李晓涵*, 陈湉茹, 张祎. 2024: GRIST单柱模式及其在评估两套物理方案包中的应用. 气象学报. https://DOI:10.11676/qxxb2024.20230152.
42. 王一鸣,张祎*,李晓涵,刘壮,周逸辉. 2024. GRIST天气-气候一体化模式系统框架功能设计和应用[J]. 气象科技进展.
41. 陈湉茹, 张祎*, 孙溦, 李妮娜, 刘鸿波, 徐幼平. 2024. 应用GRIST模式对“23·7”华北极端降水的模拟试验[J]. 暴雨灾害, 43(3): 276-287. https://DOI:10.12406/byzh.2023-263.
40. 王一鸣, 李晓涵, 张祎*, 原韦华, 周逸辉, 李建. 2024. GRIST模式全球0.125度基线配置的中期降水预报性能分析[J]. 大气科学. https://DOI:10.3878/j.issn.1006-9895.2309.22223.
2023
39. Li, X., Y. Zhang*, X. Peng, B. Zhou, J. Li, and Y. Wang, (2023), Intercomparison of the weather and climate physics suites of a unified forecast–climate model system (GRIST-A22.7.28) based on single-column modeling. Geosci. Model Dev., 16(10), 2975-2993. https://doi:10.5194/gmd-16-2975-2023. (天气和气候尺度物理过程的单柱测试对比分析)
38. Zhou, Y., R. Yu*, Y. Zhang*, and J. Li, (2023), Dynamic and thermodynamic processes related to precipitation diurnal cycle simulated by GRIST. Climate Dynamics. https://doi:10.1007/s00382-023-06779-7.
37. Zhang, Y.*, J. Li, H. Zhang, X. Li, L. Dong, X. Rong, C. Zhao, X. Peng, and Y. Wang, 2023: History and Status of Atmospheric Dynamical Core Model Development in China. Numerical Weather Prediction: East Asian Perspectives, S. K. Park, Ed., Springer International Publishing, 3-36.
36. Chen, T., Y. Zhang*, and N. Li, (2023), Evaluation of CMIP6 HighResMIP Models and ERA5 Reanalysis in Simulating Summer Precipitation over the Tibetan Plateau. Atmosphere, 14(6), 1015.
35. Sun, W., J. Li*, R. Yu, N. Li, and Y. Zhang, (2023), Exploring changes of precipitation extremes under climate change through global variable-resolution modeling. Science Bulletin. doi: https://doi.org/10.1016/j.scib.2023.11.013.
34. Li, X., Y. Zhang, Y. Lin, X. Peng*, B. Zhou, P. Zhai, and J. Li, (2023), Impact of Revised Trigger and Closure of the Double-Plume Convective Parameterization on Precipitation Simulations over East Asia. Advances in Atmospheric Sciences, 40(7), 1225-1243. https://doi:10.1007/s00376-022-2225-9.
33. Chen, T., J. Li*, Y. Zhang, H. Chen, P. Li, and H. Che, (2023), Evaluation of Hourly Precipitation Characteristics from a Global Reanalysis and Variable-Resolution Global Model over the Tibetan Plateau by Using a Satellite-Gauge Merged Rainfall Product. Remote Sensing, 15(4), 1013.
32. 李建*, 包庆, 雷荔傈, 张祎. 2023. 国家自然科学基金大气科学学科二级申请代码下设研究方向与关键词解读:D0511大气数值模式发展[J]. 大气科学, 47(1): 194−202. https://doi:10.3878/j.issn.1006-9895.2211.22311.
31. 李晓涵,张祎*,林岩銮,彭新东,李建. 2023. 一套湿物理参数化方案在GRIST全球模式中的应用及其对模拟气候态的影响. 气象学报,81(4):630-644 https://doi:10.11676/qxxb2023.20230001.
30. 陈苏阳,张祎*,周逸辉,李晓涵,王一鸣,陈昊明. 2023. GRIST模式夏季气候回报试验中东亚降水季节内特征的评估. 气象学报,81(2):269-285 https://doi:10.11676/qxxb2023.20220120.
2020-2022
29. Li, J. and Y. Zhang*, Enhancing the stability of a global model by using an adaptively implicit vertical moist transport scheme. Meteorology and Atmospheric Physics, 2022. 134(3): p. 55.
28. Zhang, Y.*, X. Li, Z. Liu, X. Rong, J. Li*, Y. Zhou, and S. Chen, (2022), Resolution Sensitivity of the GRIST Nonhydrostatic Model From 120 to 5 km (3.75 km) During the DYAMOND Winter. Earth and Space Science, 9(9), e2022EA002401.doi:https://doi.org/10.1029/2022EA002401. (GRIST首次应用于全球风暴解析尺度模拟,分辨率敏感性研究)
27. Li, X., Y. Zhang, X. Peng*, W. Chu, Y. Lin, and J. Li, (2022), Improved Climate Simulation by Using a Double-Plume Convection Scheme in a Global Model. Journal of Geophysical Research: Atmospheres, 127(11), e2021JD036069.doi:https://doi.org/10.1029/2021JD036069.
26. Zhang, Y.*, Yu, R.*, Li, J.*, Li, X., Rong, X., Peng, X., and Zhou, Y.: AMIP Simulations of a Global Model for Unified Weather-Climate Forecast: Understanding Precipitation Characteristics and Sensitivity Over East Asia, Journal of Advances in Modeling Earth Systems, 13, e2021MS002592, https://doi.org/10.1029/2021MS002592, 2021. (基于中尺度物理过程的AMIP型模拟试验及东亚降水模拟分析)
25. Li, X., X. Peng*, and Y. Zhang, (2020), Investigation of the effect of the time step on the physics–dynamics interaction in CAM5 using an idealized tropical cyclone experiment. Climate Dynamics, 55(3), 665-680.https://doi:10.1007/s00382-020-05284-5.
24. Zhou, Y., Zhang, Y.*, Li, J., Yu, R., and Liu, Z.: Configuration and evaluation of a global unstructured mesh atmospheric model (GRIST-A20.9) based on the variable-resolution approach, Geosci. Model Dev., 13, 6325-6348, https://doi:10.5194/gmd-13-6325-2020, 2020. (全球可变分辨率模式设置和理想试验评估)
23. Zhang, Y.*, Li, J., Yu, R., Liu, Z., Zhou, Y., Li, X., and Huang, X.: A Multiscale Dynamical Model in a Dry-mass Coordinate for Weather and Climate Modeling: Moist Dynamics and its Coupling to Physics, Monthly Weather Review, https://doi:10.1175/MWR-D-19-0305.1, 2020. (通用的模式物理-动力耦合设置和湿大气模拟评估)
2019
22. Yu, R.*, Y. Zhang, J. Wang, J. Li, H. Chen, J. Gong, and J. Chen, (2019), Recent Progress in Numerical Atmospheric Modeling in China. Advances in Atmospheric Sciences, 36(9), 938-960. https://doi:10.1007/s00376-019-8203-1. (IAMAS 中国国家报告专刊)
21. Zhang, Y.*, Li, J., Yu, R., Zhang, S., Liu, Z., Huang, J., and Zhou, Y.: A Layer-Averaged Nonhydrostatic Dynamical Framework on an Unstructured Mesh for Global and Regional Atmospheric Modeling: Model Description, Baseline Evaluation, and Sensitivity Exploration, Journal of Advances in Modeling Earth Systems, 11, 1685-1714, https://10.1029/2018MS001539, 2019. (三维非静力动力框架离散算法和模式评估)
20. Zhang, Y.*, H. Chen, and D. Wang, (2019), Robust Nocturnal and Early Morning Summer Rainfall Peaks over Continental East Asia in a Global Multiscale Modeling Framework. Atmosphere, 10(2).https://doi:10.3390/atmos10020053.(ECMWF物理过程专家P.Bechtold约稿)
19. Zhou, Y., Y. Zhang*, X. Rong, J. Li, and R. Yu, (2019), Performance of CAMS-CSM in Simulating the Shortwave Cloud Radiative Effect over Global Stratus Cloud Regions: Baseline Evaluation and Sensitivity Test. Journal of Meteorological Research, 33(4), 651-665.https://doi:10.1007/s13351-019-8206-y.
18. Wang, L., Zhang, Y.*, Li, J., Liu, Z., and Zhou, Y.: Understanding the Performance of an Unstructured-Mesh Global Shallow Water Model on Kinetic Energy Spectra and Nonlinear Vorticity Dynamics, Journal of Meteorological Research, 33, 1075-1097, https://10.1007/s13351-019-9004-2, 2019.
2016-2018
17. Zhang, Y.*: Extending High-Order Flux Operators on Spherical Icosahedral Grids and Their Applications in the Framework of a Shallow Water Model, Journal of Advances in Modeling Earth Systems, 10, 145-164, https://10.1002/2017MS001088, 2018.
16. Zhang, Y.*, R. Yu, and J. Li, (2017), Implementation of a conservative two-step shape-preserving advection scheme on a spherical icosahedral hexagonal geodesic grid. Advances in Atmospheric Sciences, 34(3), 411-427. https://doi:10.1007/s00376-016-6097-8.
15. Zhao, S., H. Chen, R. Yu, J. Li, and Y. Zhang, (2018), The coherent large-scale circulation change between dry/wet years over central eastern China simulated by NCAR CAM5. Theoretical and Applied Climatology, 131(1), 201-211. https://doi:10.1007/s00704-016-1979-3.
14. Zhou, T., B. Wu, Y. Li, H. Liu, L. Li, L. Zhang, F. Song, C. Zhao, L. Dong, C. He, Y. Zhang, and W. Yuan, 2016: Metrics for Gauging Model Performance Over the East Asian–Western Pacific Domain. Development and Evaluation of High-Resolution Climate System Models, R. Yu, T. Zhou, T. Wu, W. Xue, and G. Zhou, Eds., Springer Singapore, 209-256.
13. Wu, T., R. Yu, W. Li, Y. Fang, J. Zhang, Z. Wang, J. Li, Y. Lu, F. Wu, M. Chu, Y. Liu, L. Zhang, X. Xin, Y. Zhang, W. Jie, X. Liu, F. Wang, W. Zhou, Y. Zhang, L. Zou, Y. Gao, Z. Song, and C. Xia, 2016: Studies on the Model Dynamics and Physical Parameterizations of the High-Resolution Version of the Global Climate System Model BCC_CSM. Development and Evaluation of High-Resolution Climate System Models, R. Yu, T. Zhou, T. Wu, W. Xue, and G. Zhou, Eds., Springer Singapore, 105-161.
12. Zhang, Y.*, and J. Li, (2016), Impact of moisture divergence on systematic errors in precipitation around the Tibetan Plateau in a general circulation model. Climate Dynamics, 47(9), 2923-2934.https://doi:10.1007/s00382-016-3005-y. (揭示动力过程高原南坡降水的作用)
11. Zhang, Y.*, and H. Chen, (2016), Comparing CAM5 and Superparameterized CAM5 Simulations of Summer Precipitation Characteristics over Continental East Asia: Mean State, Frequency-Intensity Relationship, Diurnal Cycle, and Influencing Factors. Journal of Climate, 29(3), 1067-1089. https://doi:10.1175/JCLI-D-15-0342.1. (较早提出对流可分辨、多尺度长期气候模拟对东亚降水的模拟改进和原因)
2010-2015
10. Li, J., R. Yu*, W. Yuan, H. Chen, W. Sun, and Y. Zhang, (2015), Precipitation over East Asia simulated by NCAR CAM5 at different horizontal resolutions. Journal of Advances in Modeling Earth Systems, 7(2), 774-790. https://doi:10.1002/2014MS000414.
9. Yu, R., J. Li*, Y. Zhang, and H. Chen, (2015), Improvement of rainfall simulation on the steep edge of the Tibetan Plateau by using a finite-difference transport scheme in CAM5. Climate Dynamics, 45(9-10), 2937-2948. https://doi:10.1007/s00382-015-2515-3.
8. 周焕,田禾,屈建军,牛清河,张祎. 气象要素对敦煌鸣沙山月牙泉风景区风沙输移的影响[J]. 干旱区研究, 2015, 32(5): 1007-1016.
7. Zhang, Y., H. Chen*, and R. Yu, (2015), Simulations of Stratus Clouds over Eastern China in CAM5: Sources of Errors. Journal of Climate, 28(1), 36-55. https://doi:10.1175/JCLI-D-14-00350.1.
6. Zhang, Y., H. Chen*, and R. Yu, (2014), Vertical Structures and Physical Properties of the Cold-Season Stratus Clouds Downstream of the Tibetan Plateau: Differences between Daytime and Nighttime. Journal of Climate, 27(18), 6857-6876. https://doi:10.1175/JCLI-D-14-00063.1.
5. Zhang, Y., H. Chen*, and R. Yu, (2014), Simulations of Stratus Clouds over Eastern China in CAM5: Sensitivity to Horizontal Resolution. Journal of Climate, 27(18), 7033-7052. https://doi:10.1175/JCLI-D-13-00732.1.
4. Zhang, Y., and J. Li*, (2013), Shortwave cloud radiative forcing on major stratus cloud regions in AMIP-type simulations of CMIP3 and CMIP5 models. Adv. Atmos. Sci., 30(3)(884–907. https://doi:10.1007/s00376-013-2153-9.
3. Zhang, Y., R. Yu*, J. Li, W. Yuan, and M. Zhang, (2013), Dynamic and Thermodynamic Relations of Distinctive Stratus Clouds on the Lee Side of the Tibetan Plateau in the Cold Season. Journal of Climate, 26(21), 8378-8391. https://doi:10.1175/jcli-d-13-00009.1.
2. 张祎, 宇如聪*, 李建, 陈昊明. 两步保形平流方案在高分辨率球面经纬网格下的跳点差分试验[J]. 气象学报, 2013, (6): 1089-1102. https://doi:10.11676/qxxb2013.085.
1. 张祎, 王在志, 宇如聪. BCC_AGCM2.1对中国东部地区云辐射特征模拟的偏差分析[J]. 气象学报, 2012, (6): 1260-1275. https://doi:10.11676/qxxb2012.106.
专利授权
1.发明专利证书:《一种非结构网格气象数值模式计算系统》,ZL201810226798.X,排名第一。
2.发明专利证书:《气象资料同化方法、装置、设备、可读存储介质及产品》,ZL202111641145.6,排名第二。

