个人简介
袁明志,博士,智能医学图像计算江苏高校重点实验室及智慧医疗研究院核心成员。2020年于哈尔滨工业大学获得工学学士学位(通信工程),2025年于复旦大学获工学博士学位(生物医学工程)。目前主要研究方向为三维计算机视觉、AI4Science(智能药物设计)等。近三年在ICCV、ECCV、CVPR、ICRA、BIB、TCSVT等顶级会议及期刊上发表论文20余篇,其中第一作者(含共同作者)17篇,长期担任领域重要期刊TPAMI、TIP、RAL、自动化学报审稿人。
招生简介
课题组长期支持在校本科生参与科研创新类项目、进行毕业论文(设计)工作(提供idea、计算资源、论文写作指导及润色,报销论文版面费,提供海外交流资助,针对想继续学术深造的本科生,全力推荐到复旦、交大等高校深造,针对想去工业界的同学,提供字节、大疆等公司内推)
面向计算机科学、人工智能等方向招收研究生,欢迎计算机科学、自动化、电子、数学物理、生物医学工程、生命科学、药学等相关专业的同学报考
欢迎邮件咨询:mzyuan@nuist.edu.cn
研究方向(包括但不限于)
三维计算机视觉:点云配准、点云感知、三维重建
AI4Science:蛋白质表示学习、虚拟药物筛选、分子对接、分子表示学习、糖基化
近期学术成果(持续更新)
谷歌学术:https://scholar.google.com.hk/citations?user=oheIjbUAAAAJ&hl=zh-CN
2025年:
[1] Yuan M, Shen A, Ma Y, et al. ProteinF3S: boosting enzyme function prediction by fusing protein sequence, structure, and surface[J]. Briefings in Bioinformatics, 2025, 26(1): bbae695. (中科院一区,生物信息学顶刊)
[2] Yuan M, Shen A, Ma Y, et al. Boosting 3D Point Cloud Registration by Orthogonal Self-ensemble Learning[J]. IEEE Transactions on Artificial Intelligence, 2025.
[3] Fu K, Yuan M#, Wang C, et al. Dual Focus-Attention Transformer for Robust Point Cloud Registration[C]//Proceedings of the Computer Vision and Pattern Recognition Conference. 2025: 11769-11778. (计算机视觉三大顶会,共一排二)
[4] Shen A, Yuan M#, Du J, et al. Drug-TTA: Test-Time Adaptation for Drug Virtual Screening via Multi-task Meta-Auxiliary Learning[C]//Forty-second International Conference on Machine Learning. (机器学习三大顶会,共一排二)
[5] Ma Y, Yuan M#, Shen A, et al. SeLa-MIL: Developing an instance-level classifier via weakly-supervised self-training for whole slide image classification[J]. Computer Methods and Programs in Biomedicine, 2025: 108614. (中科院二区,共一排二)
[6] Du J, Yuan M, Shen A, et al. PPDock: Pocket Prediction-Based Protein–Ligand Blind Docking[J]. Journal of Chemical Information and Modeling, 2025. (中科院二区,生物信息学顶刊)
[7] Li S, Yuan M, Dai X, et al. Evaluation of uncertainty estimation methods in medical image segmentation: Exploring the usage of uncertainty in clinical deployment[J]. Computerized Medical Imaging and Graphics, 2025: 102574. (中科院二区)
[8] Ma Y, An B, Shen A, et al. Flow-MIL: Constructing Highly-expressive Latent Feature Space For Whole Slide Image Classification Using Normalizing Flow[C].//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2025. (计算机视觉三大顶会)
2024年:
[1] Yuan M, Fu K, Li Z, et al. Robust point cloud registration via random network co-ensemble[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(7): 5742-5752. (中科院一区)
[2] Yuan M, Huang Q, Shen A, et al. Exploring Self-Supervised Learning for 3D Point Cloud Registration[J]. IEEE Robotics and Automation Letters, 2024. (中科院二区)
[3] Yuan M, Fu K, Li Z, et al. Decoupled deep hough voting for point cloud registration[J]. Frontiers of Computer Science, 2024, 18(2): 182703. (中科院二区,国产卓越期刊)
[4] Shen A, Yuan M#, Ma Y, et al. Complementary multi-modality molecular self-supervised learning via non-overlapping masking for property prediction[J]. Briefings in Bioinformatics, 2024, 25(4): bbae256. (中科院一区,生物信息学顶刊,共一排二)
[5] Shen A, Yuan M#, Ma Y, et al. PGBind: pocket-guided explicit attention learning for protein–ligand docking[J]. Briefings in Bioinformatics, 2024, 25(5): bbae455. (中科院一区,生物信息学顶刊,共一排二)
[6] Shen A, Yuan M#, Ma Y, et al. Ss-pro: A simplified siamese contrastive learning approach for protein surface representation[J]. Frontiers of Computer Science, 2024, 18(5): 185910. (中科院二区,国产卓越期刊,共一排二)
2023年:
[1] Yuan M, Fu K, Li Z, et al. PointMBF: A multi-scale bidirectional fusion network for unsupervised RGB-D point cloud registration[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023: 17694-17705. (计算机视觉三大顶会)
[2] Yuan M, Huang X, Fu K, et al. Boosting 3D point cloud registration by transferring multi-modality knowledge[C]//2023 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2023: 11734-11741. (机器人领域顶会)
[3] Yuan M, Shen A, Fu K, et al. ProteinMAE: masked autoencoder for protein surface self-supervised learning[J]. Bioinformatics, 2023, 39(12): btad724. (中科院二区,生物信息学顶刊)
[4] Fu K, Yuan M#, Liu S, et al. Boosting point-bert by multi-choice tokens[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 34(1): 438-447. (中科院一区,共一排二)
[5] Jin Q, Li S, Du X, et al. Density-based one-shot active learning for image segmentation[J]. Engineering Applications of Artificial Intelligence, 2023, 126: 106805. (中科院一区)
2022年:
[1] Yuan M, Li Z, Jin Q, et al. Pointclm: A contrastive learning-based framework for multi-instance point cloud registration[C]//European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022: 595-611. (计算机视觉三大顶会)
[2] Luo J, Yuan M#, Fu K, et al. Deep graph matching based dense correspondence learning between non-rigid point clouds[J]. IEEE Robotics and Automation Letters, 2022, 7(3): 5842-5849. (中科院二区,共一排二)
[3] Jin Q, Yuan M, Wang H, et al. Deep active learning models for imbalanced image classification[J]. Knowledge-Based Systems, 2022, 257: 109817. (中科院一区)
[4] Jin Q, Yuan M, Qiao Q, et al. One-shot active learning for image segmentation via contrastive learning and diversity-based sampling[J]. Knowledge-Based Systems, 2022, 241: 108278. (中科院一区)
[5] Jin Q, Yuan M, Li S, et al. Cold-start active learning for image classification[J]. Information sciences, 2022, 616: 16-36. (中科院一区)
曾获荣誉
上海市优秀毕业生
复旦大学国家奖学金
复旦大学荣林氏奖学金
哈尔滨工业大学优秀毕业生
教育经历
[1] 复旦大学 工学博士学位
[2] 哈尔滨工业大学 工学学士学位
工作经历
[1] 2025.6- 至今
南京信息工程大学
社会兼职
- 暂无内容
研究方向
[1] AI4Science (智能药物设计)
[2] 三维计算机视觉
其他联系方式
团队成员
暂无内容