Gender:Male
Alma Mater:Institute of Atmospheric Physics, CAS
Education Level:With Certificate of Graduation for Doctorate Study
[MORE]
从事多尺度天气-气候模拟研究、数值模式发展和评估改进研究、气候系统云-降水过程研究等。2017年评为中国气象科学研究院副研究员。2021年12月入选国家高层次青年人才计划。2022年3月起,任科创板首批上市企业—PIESAT首席科学家,并于2023年2月兼任南京信息工程大学客座教授,继续从事多尺度数值模拟和模式发展研究。2025年6月加入南京信息工程大学大气科学学院。
代表性成果:
1. 创新发展三维非静力大气动力框架算法(Zhang et al., 2019,2020,2024)。在此基础上领衔发展了一个支持天气-气候、全球-区域一体化模拟预测的大气模式系统(Zhang et al. 2021; Zhang et al. 2022; Li, Zhang et al. 2022; Chen, Zhang et al. 2025)。实现具备全球1–5公里分辨率、风暴解析能力的非静力大气模拟,并支持可变分辨率模拟(Zhou, Zhang et al. 2020)。参与DYAMOND全球风暴解析尺度多模式国际比较计划、ICCP-GSRA国际风暴解析模式数据分析会议等。
2. 系统理解并揭示了复杂地形区域云降水与大气环流之间的多尺度相互作用机制(Zhang and Chen 2016; Zhang and Li 2016),促进在东亚区域的数值模式性能改进与评估。
3. 融合高性能计算与人工智能技术,探索千米尺度模式的跨学科集成创新与应用(Chen, Zhang et al. 2024; Duan, Zhang et al. 2025)。
研究成果在AAS,CD,ESS,GMD,JAMES,JC,JMR,JGR-A,QJRMS,MWR,大气科学,气象学报等国内外大气科学领域重要刊物发表论文50余篇,70%为一作/通信。在ICCP-GSRA、JpGU、PPoPP、中国气象局-ECMWF双边会议、第一届未来大气科学论坛等国内外会议上作特邀或主题报告。发展的模式已广泛应用于科学研究、气象行业服务及教育教学,为国家重点研发计划、中国气象局多项科技攻关任务、企业服务等提供了有力支撑。为我国在高精度、高性能天气-气候模拟领域迈向国际前沿做出了积极探索。研究不仅在科学层面解决了多个关键问题,还通过工程化实现提升了成果的实用性与可扩展性。已指导(含协助)硕博士研究生、博士后、团队研究成员十余人(成果详见发表论文),多人已获高级职称并获国自然青年基金资助。
Curriculum Vitae in English: YiZhang_202506.pdf
研究、招生方向和专业背景
研究包括如下领域,诚邀大气科学相关专业、计算机科学、软件工程、人工智能等专业背景学生报考。
1. 地球系统建模方法和模式发展技术
2. 数值模式评估方法及评估诊断分析
3. 天气和气候模式的应用研究
4. 高性能计算-人工智能-数值模式交叉研究
主持和参与项目
10. 南京信息工程大学引进人才启动经费,南京信息工程大学,2025-2027,在研,主持。
9. 局地加密方案稳定度及效率测试,上海台风所横向课题,2023-2024,已结题。主持。
8. 国家青年人才计划,2021.12-2024.12,已结题。主持。
7. 国家自然科学基金委员会,面上项目,41875135,全球准均匀网格数值模式中两类传输问题及其计算策略研究,2019-01至2022-12,62万,已结题,主持。(国自然基金委典型资助成果介绍)
6. 国家自然科学基金委员会,青年项目,41505066,基于高分辨率云解析模式结果评估改进气候模式对云雨过程的模拟,2016-01至2018-12,已结题,主持。
5. 中国气象科学研究院基本科研业务费专项基金,2015Y005,气候模式中云雨过程的评估和改进,2015.05-2017.12,已结题,主持。
4. 科技部国家重点研发计划,2017YFC1502200,基于非结构网格的天气-气候一体化模式动力框架研发,2018-01至2021-12,已结题,骨干。
3. 国家自然科学基金委员会,重点项目,91637210,大气环流模式对青藏高原陡峭地形区降水模拟的改进研究,2017-01至2020-12,已结题,骨干。
2. 国家自然科学基金委员会,战略咨询项目,41942043,地球系统模式发展战略研究,2020-01至2020-12,已结题,骨干。
1. 科技部国家重点研发计划,2016YFA0602100,基于高分辨率气候系统模式的无缝隙气候预测系统研制与评估,2016-07至2021-06,已结题,骨干。
荣誉奖励
2024 CCF HPC China 2024超算年度最佳应用提名奖 中国计算机学会
2020 中国气象科学研究院优秀青年奖 中国气象科学研究院
2019 第八届“清华大学-浪潮集团计算地球科学青年人才奖” 清华大学-浪潮集团
2016 第三届中国气象局“青年英才” 中国气象局
2016 中国气象科学研究院高层次人才培养计划 中国气象科学研究院
2015 中国科学院大气物理所优秀博士论文 中国科学院大气物理研究所
2014 中国科学院院长优秀奖 中国科学院
学术兼职
2023/02至今 南京信息工程大学 客座教授
2020/03至今 世界气象组织(WMO)联合技术专家组成员
2020/03-2022/03 中国气象事业发展咨询委员会科研组委员
2020/01-2020/12 基金委地球系统模式发展战略研究专家咨询组专家
2018/05-2021/09 中国气象科学研究院多尺度气象数值预报系统团队方向首席
模式系统
https://github.com/grist-dev/GRIST
发表论文(本人加粗,*通信作者,#共同一作,红字为模式发展评估关键论文)
2025
54. Xu, K., M. Yu, Y. Chen, J. Gao, S. Wang, J. Song, X. Duan, J. Wei, J. Yu, H. Liu*, J. Jiang, Y. Zhang, P. Lin, T. Wang, P. Wang, W. Zheng, J. Xie, J. Zhang, Z. Liu, X. Jin, J. Wei, Q. Chang, Q. Lin, Y. Zhou, W. Liu, W. Xue, Y. Li, H. Fu, Y. Yu, X. Chi, and L. Wu, Kilometer-Scale AI-Powered and Performance-Portable Earth System Model (AP3ESM) to Achieve Year-Scale Simulation Speed on Heterogeneous Supercomputers. SC25, 2025.
53. Chen, T.#, Y. Zhang#*, Y. Wang, and W. Yuan, Impact of Lateral Boundary Flows on Regional Convection-Permitting Simulations over the Tibetan Plateau: A Global-Regional Integrated Modeling Study. Journal of Geophysical Research-Atmospheres, 2025. (基于外部大尺度模式的首个区域降尺度及全球-区域千米尺度模拟对比研究)
52. Duan, X.#, Y. Zhang*#, K. Xu#, H. Fu, B. Yang, Y. Wang, Y. Han, S. Chen, Z. Zhou, C. Wang, D. Huang, H. An, X. Ju, H. Huang, Z. Liu, W. Xue*, W. Liu*, B. Yan, J. Hou, M. Yu, W. Chen, J. Li, Z. Jing, H. Liu*, and L. Wu, 2025: An AI-Enhanced 1km-Resolution Seamless Global Weather and Climate Model to Achieve Year-Scale Simulation Speed using 34 Million Cores. Proceedings of the 30th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming, Association for Computing Machinery, 524–538.(基于GRIST的首个全球1km尺度模拟和可扩展性测试)
51. Fu, Z., Y. Zhang*, X. Li, C. Zhu, H. Liu, X. Rong, and C. Li, (2025), Intercomparison of two model climates simulated by a unified weather-climate model system (GRIST), part II: Madden–Julian oscillation. Climate Dynamics, 63(1), 55. https://doi:10.1007/s00382-024-07527-1. (天气和气候尺度物理的AMIP模拟对比研究:MJO)
50. Zhou, Y. H., R. C. Yu, Y. Zhang*, J. Li, and H. M. Chen, 2025: Sensitivity of a kilometer-scale variable-resolution global nonhydrostatic model to microphysics schemes in simulating a mesoscale convective system. Adv. Atmos. Sci., 42(7), 1333−1348, https://doi.org/10.1007/s00376-024-4246-z.(千米尺度MCS个例模拟对云微物理过程的敏感性)
49. 郜婕,容新尧,张祎*,付振,林鹏飞. 2025. 基于ESMF/NUOPC耦合框架的GRIST-WW3气-浪耦合模式及其数值模拟初探. 气象学报.
2024
48. Fu, Z., Y. Zhang*, X. Li, and X. Rong, (2024), Intercomparison of two model climates simulated by a unified weather-climate model system (GRIST), part I: mean state. Climate Dynamics, 62(7), 6273-6291.https://doi:10.1007/s00382-024-07205-2.(天气和气候尺度物理的AMIP模拟对比研究:平均态)
47. Chen, S., Y. Zhang*, Y. Wang, Z. Liu, X. Li, and W. Xue, (2024), Mixed-precision computing in the GRIST dynamical core for weather and climate modelling. Geosci. Model Dev., 17(16), 6301-6318.https://doi:10.5194/gmd-17-6301-2024. (混合精度版本动力框架代码发展)
46. Li, X., W. Chu, Y. Zhang*, and Y. Wang, (2024), Extending a dry-environment convection parameterization to couple with moist turbulence and a baseline evaluation in the GRIST model. Quarterly Journal of the Royal Meteorological Society, 150(763), 3368-3384.doi:https://doi.org/10.1002/qj.4763.
45. Zhang, Y.*, Z. Liu, Y. Wang, and S. Chen, (2024), Establishing a limited-area model based on a global model: A consistency study. Quarterly Journal of the Royal Meteorological Society, 150(764), 4049-4065.doi:https://doi.org/10.1002/qj.4804. (基于全球模式发展的有限区域模式及一致性研究)
44. 李晓涵, 林岩銮, 张祎, 彭新东. 2024: 双羽对流参数化方案在CIESM模式中的应用及对模拟气候的影响. 气象学报. https://DOI:10.11676/qxxb2024.20230178.
43. 张萌, 李晓涵, 陈湉茹, 张祎. 2024: GRIST单柱模式及其在评估两套物理方案包中的应用. 气象学报. https://DOI:10.11676/qxxb2024.20230152.
42. 王一鸣,张祎*,李晓涵,刘壮,周逸辉. 2024. GRIST天气-气候一体化模式系统框架功能设计和应用[J]. 气象科技进展. (气象科技进展封面首页)
41. 陈湉茹, 张祎*, 孙溦, 李妮娜, 刘鸿波, 徐幼平. 2024. 应用GRIST模式对“23·7”华北极端降水的模拟试验[J]. 暴雨灾害, 43(3): 276-287. https://DOI:10.12406/byzh.2023-263.
40. 王一鸣, 李晓涵, 张祎*, 原韦华, 周逸辉, 李建. 2024. GRIST模式全球0.125度基线配置的中期降水预报性能分析[J]. 大气科学. https://DOI:10.3878/j.issn.1006-9895.2309.22223.
2023
39. Li, X., Y. Zhang*, X. Peng, B. Zhou, J. Li, and Y. Wang, (2023), Intercomparison of the weather and climate physics suites of a unified forecast–climate model system (GRIST-A22.7.28) based on single-column modeling. Geosci. Model Dev., 16(10), 2975-2993. https://doi:10.5194/gmd-16-2975-2023.(天气和气候尺度物理过程的单柱测试对比分析)
38. Zhou, Y., R. Yu*, Y. Zhang*, and J. Li, (2023), Dynamic and thermodynamic processes related to precipitation diurnal cycle simulated by GRIST. Climate Dynamics. https://doi:10.1007/s00382-023-06779-7.
37. Zhang, Y.*, J. Li, H. Zhang, X. Li, L. Dong, X. Rong, C. Zhao, X. Peng, and Y. Wang, 2023: History and Status of Atmospheric Dynamical Core Model Development in China. Numerical Weather Prediction: East Asian Perspectives, S. K. Park, Ed., Springer International Publishing, 3-36.
36. Chen, T., Y. Zhang*, and N. Li, (2023), Evaluation of CMIP6 HighResMIP Models and ERA5 Reanalysis in Simulating Summer Precipitation over the Tibetan Plateau. Atmosphere, 14(6), 1015.
35. Sun, W., J. Li*, R. Yu, N. Li, and Y. Zhang, (2023), Exploring changes of precipitation extremes under climate change through global variable-resolution modeling. Science Bulletin. doi: https://doi.org/10.1016/j.scib.2023.11.013.
34. Li, X., Y. Zhang, Y. Lin, X. Peng*, B. Zhou, P. Zhai, and J. Li, (2023), Impact of Revised Trigger and Closure of the Double-Plume Convective Parameterization on Precipitation Simulations over East Asia. Advances in Atmospheric Sciences, 40(7), 1225-1243. https://doi:10.1007/s00376-022-2225-9.
33. Chen, T., J. Li*, Y. Zhang, H. Chen, P. Li, and H. Che, (2023), Evaluation of Hourly Precipitation Characteristics from a Global Reanalysis and Variable-Resolution Global Model over the Tibetan Plateau by Using a Satellite-Gauge Merged Rainfall Product. Remote Sensing, 15(4), 1013.
32. 李建*, 包庆, 雷荔傈, 张祎. 2023. 国家自然科学基金大气科学学科二级申请代码下设研究方向与关键词解读:D0511大气数值模式发展[J]. 大气科学, 47(1): 194−202. https://doi:10.3878/j.issn.1006-9895.2211.22311.
31. 李晓涵,张祎*,林岩銮,彭新东,李建. 2023. 一套湿物理参数化方案在GRIST全球模式中的应用及其对模拟气候态的影响. 气象学报,81(4):630-644 https://doi:10.11676/qxxb2023.20230001.
30. 陈苏阳,张祎*,周逸辉,李晓涵,王一鸣,陈昊明. 2023. GRIST模式夏季气候回报试验中东亚降水季节内特征的评估. 气象学报,81(2):269-285 https://doi:10.11676/qxxb2023.20220120.
2020-2022
29. Li, J. and Y. Zhang*, Enhancing the stability of a global model by using an adaptively implicit vertical moist transport scheme. Meteorology and Atmospheric Physics, 2022. 134(3): p. 55.
28. Zhang, Y.*, X. Li, Z. Liu, X. Rong, J. Li*, Y. Zhou, and S. Chen, (2022), Resolution Sensitivity of the GRIST Nonhydrostatic Model From 120 to 5 km (3.75 km) During the DYAMOND Winter. Earth and Space Science, 9(9), e2022EA002401.doi:https://doi.org/10.1029/2022EA002401. (首次应用于全球风暴解析尺度模拟,分辨率敏感性研究)
27. Li, X., Y. Zhang, X. Peng*, W. Chu, Y. Lin, and J. Li, (2022), Improved Climate Simulation by Using a Double-Plume Convection Scheme in a Global Model. Journal of Geophysical Research: Atmospheres, 127(11), e2021JD036069.doi:https://doi.org/10.1029/2021JD036069.(基于气候尺度物理过程的AMIP型模拟试验及对流方案改进)
26. Zhang, Y.*, Yu, R.*, Li, J.*, Li, X., Rong, X., Peng, X., and Zhou, Y.: AMIP Simulations of a Global Model for Unified Weather-Climate Forecast: Understanding Precipitation Characteristics and Sensitivity Over East Asia, Journal of Advances in Modeling Earth Systems, 13, e2021MS002592, https://doi.org/10.1029/2021MS002592, 2021. (基于中尺度物理过程的AMIP型模拟试验及东亚降水模拟分析)
25. Li, X., X. Peng*, and Y. Zhang, (2020), Investigation of the effect of the time step on the physics–dynamics interaction in CAM5 using an idealized tropical cyclone experiment. Climate Dynamics, 55(3), 665-680.https://doi:10.1007/s00382-020-05284-5.
24. Zhou, Y., Zhang, Y.*, Li, J., Yu, R., and Liu, Z.: Configuration and evaluation of a global unstructured mesh atmospheric model (GRIST-A20.9) based on the variable-resolution approach, Geosci. Model Dev., 13, 6325-6348, https://doi:10.5194/gmd-13-6325-2020, 2020. (全球可变分辨率模式设置和理想试验评估)
23. Zhang, Y.*, Li, J., Yu, R., Liu, Z., Zhou, Y., Li, X., and Huang, X.: A Multiscale Dynamical Model in a Dry-mass Coordinate for Weather and Climate Modeling: Moist Dynamics and its Coupling to Physics, Monthly Weather Review, https://doi:10.1175/MWR-D-19-0305.1, 2020. (通用的模式物理-动力耦合设置和湿大气模拟评估)
2019
22. Yu, R.*, Y. Zhang, J. Wang, J. Li, H. Chen, J. Gong, and J. Chen, (2019), Recent Progress in Numerical Atmospheric Modeling in China. Advances in Atmospheric Sciences, 36(9), 938-960. https://doi:10.1007/s00376-019-8203-1. (IAMAS 中国国家报告专刊)
21. Zhang, Y.*, Li, J., Yu, R., Zhang, S., Liu, Z., Huang, J., and Zhou, Y.: A Layer-Averaged Nonhydrostatic Dynamical Framework on an Unstructured Mesh for Global and Regional Atmospheric Modeling: Model Description, Baseline Evaluation, and Sensitivity Exploration, Journal of Advances in Modeling Earth Systems, 11, 1685-1714, https://10.1029/2018MS001539, 2019. (三维非静力动力框架离散算法和模式评估)
20. Zhang, Y.*, H. Chen, and D. Wang, (2019), Robust Nocturnal and Early Morning Summer Rainfall Peaks over Continental East Asia in a Global Multiscale Modeling Framework. Atmosphere, 10(2).https://doi:10.3390/atmos10020053.(ECMWF物理过程专家P.Bechtold约稿)
19. Zhou, Y., Y. Zhang*, X. Rong, J. Li, and R. Yu, (2019), Performance of CAMS-CSM in Simulating the Shortwave Cloud Radiative Effect over Global Stratus Cloud Regions: Baseline Evaluation and Sensitivity Test. Journal of Meteorological Research, 33(4), 651-665.https://doi:10.1007/s13351-019-8206-y.
18. Wang, L., Zhang, Y.*, Li, J., Liu, Z., and Zhou, Y.: Understanding the Performance of an Unstructured-Mesh Global Shallow Water Model on Kinetic Energy Spectra and Nonlinear Vorticity Dynamics, Journal of Meteorological Research, 33, 1075-1097, https://10.1007/s13351-019-9004-2, 2019.
2016-2018
17. Zhang, Y.*: Extending High-Order Flux Operators on Spherical Icosahedral Grids and Their Applications in the Framework of a Shallow Water Model, Journal of Advances in Modeling Earth Systems, 10, 145-164, https://10.1002/2017MS001088, 2018.
16. Zhang, Y.*, R. Yu, and J. Li, (2017), Implementation of a conservative two-step shape-preserving advection scheme on a spherical icosahedral hexagonal geodesic grid. Advances in Atmospheric Sciences, 34(3), 411-427. https://doi:10.1007/s00376-016-6097-8.
15. Zhao, S., H. Chen, R. Yu, J. Li, and Y. Zhang, (2018), The coherent large-scale circulation change between dry/wet years over central eastern China simulated by NCAR CAM5. Theoretical and Applied Climatology, 131(1), 201-211. https://doi:10.1007/s00704-016-1979-3.
14. Zhou, T., B. Wu, Y. Li, H. Liu, L. Li, L. Zhang, F. Song, C. Zhao, L. Dong, C. He, Y. Zhang, and W. Yuan, 2016: Metrics for Gauging Model Performance Over the East Asian–Western Pacific Domain. Development and Evaluation of High-Resolution Climate System Models, R. Yu, T. Zhou, T. Wu, W. Xue, and G. Zhou, Eds., Springer Singapore, 209-256.
13. Wu, T., R. Yu, W. Li, Y. Fang, J. Zhang, Z. Wang, J. Li, Y. Lu, F. Wu, M. Chu, Y. Liu, L. Zhang, X. Xin, Y. Zhang, W. Jie, X. Liu, F. Wang, W. Zhou, Y. Zhang, L. Zou, Y. Gao, Z. Song, and C. Xia, 2016: Studies on the Model Dynamics and Physical Parameterizations of the High-Resolution Version of the Global Climate System Model BCC_CSM. Development and Evaluation of High-Resolution Climate System Models, R. Yu, T. Zhou, T. Wu, W. Xue, and G. Zhou, Eds., Springer Singapore, 105-161.
12. Zhang, Y.*, and H. Chen, (2016), Comparing CAM5 and Superparameterized CAM5 Simulations of Summer Precipitation Characteristics over Continental East Asia: Mean State, Frequency-Intensity Relationship, Diurnal Cycle, and Influencing Factors. Journal of Climate, 29(3), 1067-1089. https://doi:10.1175/JCLI-D-15-0342.1. (代表性成果)
11. Zhang, Y.*, and J. Li, (2016), Impact of moisture divergence on systematic errors in precipitation around the Tibetan Plateau in a general circulation model. Climate Dynamics, 47(9), 2923-2934.https://doi:10.1007/s00382-016-3005-y. (代表性成果)
2010-2015 (博士阶段工作)
10. Li, J., R. Yu*, W. Yuan, H. Chen, W. Sun, and Y. Zhang, (2015), Precipitation over East Asia simulated by NCAR CAM5 at different horizontal resolutions. Journal of Advances in Modeling Earth Systems, 7(2), 774-790. https://doi:10.1002/2014MS000414.
9. Yu, R., J. Li*, Y. Zhang, and H. Chen, (2015), Improvement of rainfall simulation on the steep edge of the Tibetan Plateau by using a finite-difference transport scheme in CAM5. Climate Dynamics, 45(9-10), 2937-2948. https://doi:10.1007/s00382-015-2515-3.
8. 周焕,田禾,屈建军,牛清河,张祎. 气象要素对敦煌鸣沙山月牙泉风景区风沙输移的影响[J]. 干旱区研究, 2015, 32(5): 1007-1016.
7. Zhang, Y., H. Chen*, and R. Yu, (2015), Simulations of Stratus Clouds over Eastern China in CAM5: Sources of Errors. Journal of Climate, 28(1), 36-55. https://doi:10.1175/JCLI-D-14-00350.1.
6. Zhang, Y., H. Chen*, and R. Yu, (2014), Vertical Structures and Physical Properties of the Cold-Season Stratus Clouds Downstream of the Tibetan Plateau: Differences between Daytime and Nighttime. Journal of Climate, 27(18), 6857-6876. https://doi:10.1175/JCLI-D-14-00063.1.
5. Zhang, Y., H. Chen*, and R. Yu, (2014), Simulations of Stratus Clouds over Eastern China in CAM5: Sensitivity to Horizontal Resolution. Journal of Climate, 27(18), 7033-7052. https://doi:10.1175/JCLI-D-13-00732.1.
4. Zhang, Y., and J. Li*, (2013), Shortwave cloud radiative forcing on major stratus cloud regions in AMIP-type simulations of CMIP3 and CMIP5 models. Adv. Atmos. Sci., 30(3)(884–907. https://doi:10.1007/s00376-013-2153-9.
3. Zhang, Y., R. Yu*, J. Li, W. Yuan, and M. Zhang, (2013), Dynamic and Thermodynamic Relations of Distinctive Stratus Clouds on the Lee Side of the Tibetan Plateau in the Cold Season. Journal of Climate, 26(21), 8378-8391. https://doi:10.1175/jcli-d-13-00009.1.
2. 张祎, 宇如聪*, 李建, 陈昊明. 两步保形平流方案在高分辨率球面经纬网格下的跳点差分试验[J]. 气象学报, 2013, (6): 1089-1102. https://doi:10.11676/qxxb2013.085.
1. 张祎, 王在志, 宇如聪. BCC_AGCM2.1对中国东部地区云辐射特征模拟的偏差分析[J]. 气象学报, 2012, (6): 1260-1275. https://doi:10.11676/qxxb2012.106.
专利授权
1. 发明专利证书:《一种非结构网格气象数值模式计算系统》,ZL201810226798.X,排名第一。
2. 发明专利证书:《气象资料同化方法、装置、设备、可读存储介质及产品》,ZL202111641145.6,排名第二。
社会服务和产学研
科普服务。2018年,在中国气象局世界气象日纪念活动中进行了数值预报发展历史的科普讲座。2020年,在中国气象局科技与气候变化司举办的科技创新论坛上,为与会的全体科研人员介绍了大气模式的发展与应用百年进展(https://www.cma.gov.cn/2011xwzx/2011xgzdt/202007/t20200721_558856.html)。这些科普讲座为普及气象科学知识做出了积极贡献,获得中国气象局颁发的荣誉证书。
咨询指导。2020年,担任中国气候系统业务与科技体系发展专题研究组科研组成员,负责相关业务的战略咨询和统筹协调。担任世界气象组织(WMO)联合技术专家组成员。2022年,加入PIESAT,担任首席科学家,负责PIESAT-PreSky联合数值预报中心的规划与组建。确保博士后工作站的顺利运转,指导的博士后获得中国博士后科学基金第76批面上资助。
组织论坛。2022年起,参与PIESAT-PreSky联合举办的《大气海洋大讲堂》筹备工作,负责部分专家邀请及内部协调等任务。《大气海洋大讲堂》已成功举办67次讲座,在网络平台上产生了广泛影响(https://engine.piesat.cn/live-show-list)。2022年,应国家天津超级计算中心邀请,为其提供关于数值预报模式发展的前沿课程培训,详细介绍我国自主研发的全球-区域一体化模式及其应用(https://www.nscc-tj.cn/yhzc_pxjh)。 获得用户的积极响应,反响良好。2023年担任AOGS 2023 “Weather and Climate Studies with High Performance Computing”分会联合召集人。
竞赛筹办。2023年,PIESAT与Huawei Cloud联合举办的PIE系统开发大赛首次设立“气象数值预报组赛道”。负责赛道的任务设计、课程培训、计算平台支持及后期评审等管理与协调工作。竞赛的成功举办促进了GRIST模式的异构计算加速研究。