周波涛研究员主页
周波涛

个人信息Personal Information

研究员 博士生导师 硕士生导师

教师英文名称:Botao Zhou

教师拼音名称:Zhou Botao

所在单位:大气科学学院

职务:院长

性别:男

职称:研究员

博士生导师

硕士生导师

学科:气象学

  • 基本信息
  • 个人简介
  • 近期主要论著
  • 近期科研项目
  • 姓       名:  周波涛

    出生年月:  1979年6月

    国       籍:  中国

    性       别:  男

    导       师:  王会军院士(博士)   何金海教授(硕士)

    职       称:  教授

    职       务:  大气科学学院 院长;气象与环境联合研究中心 主任

    最高学历:  博士

    所属专业:  大气科学

    所属系部:  气候学系

    毕业院校:  中科院大气物理研究所

    研究方向:  气候变化,极端气候事件,气候变异机理与预测,气候现象与气候动力学

    办公地点:  气象楼701

    邮       箱:  zhoubt@nuist.edu.cn

    主要研究领域:  长期从事气候变化、极端气候事件、东亚气候变异机理与预测、大尺度环流系统和气候模态/大气涛动等方面的研究,在气候变化机理与预测预估方面取得显著进展:1)揭示了影响我国高温热浪、低温暴雪、干旱、洪涝、台风等灾害性气候年际和年代际变化的若干重要过程和物理机制,特别是热带Hadley环流、中高纬气候模态、极地海冰、海温等的影响,提出预测新信号;2)揭示了全球变暖背景下我国极端气候的长期变化规律以及高温热浪、低温暴雪、干旱洪涝、霾污染等的风险格局,量化了极端气候预估的不确定性来源及其相对贡献;3)揭示了热带环流系统、东亚季风系统、中高纬气候模态的未来变化及其对东亚气候的影响.

  • 教育背景:  

    1996.09-2000.06,南京气象学院大气科学系气象学专业,本科
    2000.09-2003.06,南京气象学院大气科学系气象学专业,硕士
    2003.09-2006.06,中科院大气物理研究所气象学专业,  博士

    工作经历:  

    2006.06-2008.11   国家气候中心气候变化室 助理研究员
    2008.11-2011.03   国家气候中心决策咨询部  副研究员
    2011.03-2012.06   国家气候中心业务科技处  副处长
    2012.06-2013.03   国家气候中心气候变化适应室  副主任(主持工作)
    2013.03-2014.06   国家气候中心气候变化适应室  主任
    2014.06-2018.03   国家气候中心气候变化适应室  主任/研究员
    2016.01-2016.12   云南省气象局  局长助理
    2018.03-至今         南京信息工程大学大气科学学院  教授
    2022.08-至今         南京信息工程大学大气科学学院  院长

    学术兼职:  

    IPCC第六次评估报告主要作者
    IPCC第五次评估报告第一工作组TSU
    联合国秘书长全球可持续性高级别小组顾问
    中国气象学会常务理事
    全国气候与气候变化标准技术委员会副秘书长
    中国气象学会气候变化与低碳发展委员会副主任委员
    中国
    气象学会统计气象学和气候预测委员会委员
    中国气象学会气象科学普及工作委员会委员
    江苏省气象学会第十六届理事会常务理事
    陕西省气象局秦岭和黄土高原生态环境气象重点实验室学术委员会委员
    大气科学与卫星遥感安徽省重点实验室学术委员会委员
    Advances in Atmospheric Sciences(Editor)、Journal of Tropical Meteorology、气象学报、气候变化研究进展、大气科学学报、陕西气象等期刊编委

    荣誉奖励:  

    国家杰出青年基金获得者;国家重大人才计划B类青年拔尖人才;
    江苏省重大人才工程B类特聘教授;中国气象局科技领军人才;首批中国气象局青年英才

    2024    中国十大气象科技进展
    2023    江苏省百篇优秀论文
    2020    中国科学院教育教学成果奖一等奖
    2017   “清华大学-浪潮集团计算地球科学青年人才基金”青年人才奖
    2016    邹竞蒙气象科技人才奖
    2014    十佳全国优秀青年气象科技工作者
    2014    全国优秀青年气象科技工作者
    2014    中国气象局气象部门创新工作奖
    2014    全国气象宣传作品二等奖
    2009    北京科协北京青年优秀科技论文一等奖
    2008    北京气象学会中青年优秀论文奖一等奖
    2007    涂长望青年气象科技奖
    2006    中国科学院院长优秀奖
    2006  “学笃风正”优秀博士学位论文奖

  • ResearchGate个人网页:https://www.researchgate.net/profile/Botao_Zhou

    论文 

    • Xie WX, Zhou BT*, Li H (2025). Emerging interannual variability of compound heat waves over the Yangtze River valley since 2000. J. Clim., 38: 597-609. doi:10.1175/JCLI-D-24-0226.1

    • Zhou BT, Song ZY, Yin ZC, Xu XP, Sun B, Hsu P-C, Chen HS (2024). Recent autumn sea ice loss in the eastern Arctic enhanced by summer Asian-Pacific Oscillation. Nature Communications, 15: 2798. doi:10.1038/s41467-024-47051-8

    • Li PL, Zhou BT*, Zhang DP, Xie WX, Yin ZC, Huang YY, Sun B, Sun QH (2024). Contribution of anthropogenic aerosol and greenhouse gas emissions to changes in summer upper-tropospheric thermal contrast between Asia and the North Pacific. npj Climate and Atmospheric Science, 7: 303. doi:10.1038/s41612-024-00865-1

    • Li PL, Zhou BT*, Zhang DP, Huang YY, Xie WX, Song ZY, Liu YJ (2024). On the association of Pacific Decadal Oscillation with the interdecadal variability in Asian-Pacific Oscillation. Atmos. Res., 310, 107635. doi:10.1016/j.atmosres.2024.107635

    • Xin N, Zhou BT*, Chen HS, Sun SL, Yu M (2024). NAO signal in the increased interannual variability of spring vegetation in Northeast Asia after the early 2000s. J. Geophys. Res., 129: e2024JD041324. doi:10.1029/2024JD041324

    • Xin N, Zhou BT*, Chen HS, Sun SL, Yan MC (2024). Significant influence of winter Pacific-North American pattern on spring vegetation in mid-high latitude Asia. Environ. Res. Lett., 19: 104057. doi:10.1088/1748-9326/ad7615

    • Zhang XL, Miao JP, Wang XX, Zhou BT* (2024). Interannual variation of summer compound hot and drought events in Xinjiang and its relationship with the North Atlantic sea surface temperature. J. Clim., 37: 4949-4960. doi:10.1175/JCLI-D-24-0086.1

    • Song ZY, Zhou BT*, Xu XP, Yin ZC (2024). Interdecadal change in the response of winter North Atlantic Oscillation to the preceding autumn sea ice in the Barents-Kara Seas around the early 1990s. Atmos. Res., 297: 107123. doi:10.1016/j.atmosres.2023.107123

    • Hu YP, Zhou BT*, Wang HJ, Zhang DP (2024). Record-breaking summer-autumn drought in southern China in 2022: Roles of tropical sea surface temperature and Eurasian warming. Sci. China Earth Sci., 67(2): 420-431. doi: 10.1007/ s11430 -023-1242-8  [胡跃鹏, 周波涛*, 王会军, 张大鹏. 2022年中国南方破纪录的夏秋连旱: 热带海温和欧亚加热的作用. 中国科学: 地球科学, 2024, 54(2): 439-450]

    • Yin ZC, Song XL, Zhou BT, Jiang WH, Chen HP, Wang HJ (2024). Traditional Meiyu-Baiu has been suspended by global warming. National Science Review, 11: nwae166. doi:10.1093/nsr/nwae166

    • Guo WX, Hao X, Zhou BT, Li JD, Han TT (2024). Understanding the ENSO-East Asian winter monsoon relationship in CMIP6 models: performance evaluation and influencing factors. Clim. Dyn., 62: 7519-7534. doi:10.1007/s00382-024-07292-1

    • Huang QL, Shi N, Zhou BT (2024). Monthly impact of the Scandinavian pattern on winter surface air temperature over Asia. Atmos. Res., 312: 107752. doi:10.1016/j.atmosres.2024.107752

    • Xu XP, He SP, Zhou BT, Sun B (2024). CMIP6 near-term and long-term projections of Eurasian winter cooling trend and cold extremes. Environ. Res. Lett., 19: 104038. doi:10.1088/1748-9326/ad7307

    • Li H, Yan YH, He SP, Yuan X, Zhou BT, Wang HJ, Xu ZQ, Zhen LF (2024). Interdecadal changes in interannual variability of June temperature over Northeast China induced by decadal shifts in the North Atlantic teleconnection. Clim. Dyn., 62: 9843-9860. doi:10.1007/s00382-024-07425-6

    • Fan Y, Lyu Y, Zhu SP, Yin ZC, Duan MK, Zhi XF, Zhou BT (2024). Monthly prediction on summer extreme precipitation with a deep learning approach: Experiments over the mid-to-lower reaches of the Yangtze River. Earth and Space Science, 11: e2024EA003926. doi:10.1029/2024EA003926

    • An XH, Zhang YF, Sun SL, Chai RF, Bi ZY, Li JJ, Zhou Y, Zhou BT, Chen HS (2024). Future drought overestimations due to no constraints of CO2 physiological effect and land-atmosphere coupling on potential evapotranspiration. Environ. Res. Lett., 19: 124031. doi:10.1088/1748-9326/ad8c67

    • Zhou SY, Sun B, Wang HJ, Zheng Y, Cai JR, Li HX, Zhou BT (2024). Distinct interannual variability and physical mechanisms of snowfall frequency over the Eurasian continent during autumn and winter. Adv. Atmos. Sci., 41: 1969-1983. doi:10.1007/s00376-024-3327-3

    • Chu CY, Fan Y, Yu PL, Liu Y, Chen S, Zhou BT (2024). Variations of summer extreme high temperatures over the Indochina Peninsula: Roles of oceanic systems. Atmos. Res., 311: 107684. doi:10.1016/j.atmosres.2024.107684

    • Zeng JN, Li HX, Sun B, Chen HP, Wang HJ, Zhou BT (2024). Summertime compound heat wave and drought events in China: Interregional and subseasonal characteristics, and the associated driving factors. Environ. Res. Lett., 19: 074046. doi:10.1088/1748-9326/ad5576RL

    • Tao LF, Yang XQ, Sun LY, Sun XG, Fang JB, Cai DP, Zhou BT, Chen HS (2024). Meridional path of ENSO impact on following early-summer North Pacific climate. Geophys. Res. Lett., 51: e2024GL111079. doi:10.1029/2024GL111079

    • Tao LF, Sun XG, Yang XQ, Fang JB, Cai DP, Zhou BT, Chen HS (2024). Cross-season effect of spring Kuroshio-Oyashio Extension SST anomalies on following summer atmospheric circulation. Geophys. Res. Lett., 51, e2024GL108750. doi:10.1029/2024GL108750

    • Jia WK, Zhou BT*, Song ZY (2024). Interdecadal change and projection of the relationship between spring Arctic Oscillation and summer precipitation in the Yangtze River valley in CMIP6 models. Atmos. Oceanic Sci. Lett., 17: 100481. doi:10.1016/j.aosl.2024.100481

    • Han TT, Zhou X, Li SF, Zhou BT (2024). Influence of autumn Kara Sea ice on the subsequent winter minimum temperature over the Northeast China. Int. J. Climatol., 44: 2425-2437. doi:10.1002/joc.8461

    • Xue RF, Sun B, Li WL, Li HX, Zhou BT, Luo XC, Ai WW (2024). Future projections of meteorological, agricultural and hydrological droughts in China using the emergent constraint. J. Hydrol.: Regional Studies, 53: 101767. doi:10.1016/j.ejrh.2024.101767

    • Xue RF, Sun B, Li WL, Li HX, Zhou BT (2024). Future changes in compound drought events and associated population and GDP exposure in China based on CMIP6. Atmos. Oceanic Sci. Lett., 17: 100461. doi:10.1016/j.aosl.2024.100461

    • Guo HC,Yin ZC, Xu TB, Zhou BT (2024). Different responses of surface air temperature over Eurasia in early and late winter to the autumn Kara-Laptev Sea ice. Environ. Res. Lett., 19: 044042. doi:10.1088/1748-9326/ad345f

    • Ma YT, Chen HS, Song YM, Zhou BT, Sun SL, Du XG, Sun Y (2024). Persistent greening against drying in northeast Asian semiarid grasslands: Asymmetrical responses of direct and legacy effects to intensified drought. Adv. Clim. Change Res., 15: 9-20. doi:10.1016/j.accre.2024.01.013

    • Kang J, Yu M, Xia Y, Sun SL, Zhou BT (2024). Impacts of the compound hot-dry events on vegetation productivity over Northern East Asia. Forests, 15: 549. doi:10.3390/f15030549

    • Xing SY, Shi N, Zhou BT (2024). Energy budget characteristics of the subseasonal Scandinavian pattern. Atmos. Res.,  303: 107313. doi:10.1016/j.atmosres.2024.107313

    • Tang GW, Han TT, Zhou BT, Zhang QS (2024). Westward extension of summer atmospheric circulation over the North Pacific after the 1990s. Atmos. Oceanic Sci. Lett., 17: 100408. doi:10.1016/j.aosl.2023.100408

    • Sun SL, Cai RF, Zhang YF, Wang J, Bi ZY, Li JJ, Zhou BT, Chen HS (2024). On the attribution of historical and future dryness/wetness changes in China incorporating surface resistance response to elevated CO2. Global and Planetary Change, 234: 104380. doi:10.1016/j.gloplacha.2024.104380

    • Xu TB, Yin ZC, Zhang YJ, Zhou BT (2024). Identification of shortcomings in simulating the subseasonal reversal of the warm Arctic–cold Eurasia pattern. Geophys. Res. Lett., 51: e2023GL105430. doi:10.1029/2023GL105430

    • Zhang DP, Huang YY, Zhou BT, Wang HJ, Sun B (2024). Who is the major player for 2022 China extreme heat wave? Western Pacific Subtropical high or South Asian high? Weather and Climate Extremes, 43, 100640. doi:10.1016/j.wace.2024.100640

    • 靳鑫桐, 周波涛*, 谢文欣, 胡跃鹏, 范怡  (2024). 影响华北重度和轻度高温热浪的大气背景场差异分析. 大气科学学报, 47(1):124-135

    • 王欣彤,周波涛*,韩振宇,胡跃鹏  (2024). 京津冀平原区冬季大气环境容量变化:观测与预估. 气象科学, 44(2): 210-221

    • 季玉枝, 杨小玲, 周波涛, 徐昕, 王元  (2024). 基于CMIP6 模式对青藏高原平均降水的模拟评估与预估. 南京大学学报 (自然科学),  60(2): 301-316 

    • Zhou BT, Qian J, Hu YP, Li H, Han TT, Sun B (2023). Interdecadal change in the linkage of early summer sea ice in the Barents Sea to the variability of West China Autumn Rain. Atmos. Res., 287: 106717. doi:10.1016/j.atmosres.2023.106717 

    • Xie WX, Zhou BT* (2023). On the atmospheric background for the occurrence of three heat wave types in East China. Weather and Climate Extremes, 39: 100539. doi:10.1016/j.wace.2022.100539WACE

    • Xin N, Zhou BT*, Chen HS, Sun SL (2023). Variability of spring ecosystem water use efficiency in Northeast Asia and its linkage to the Polar-Eurasia pattern. Environ. Res. Lett., 18: 094055. doi:10.1088/1748-9326/acf777

    • Xin N, Zhou BT*, Chen HS, Sun SL (2023). Linkage of spring vegetation dipole pattern in mid-high latitude Asia to preceding autumn sea ice over the Barents-Laptev Seas. J. Geophys. Res., 128: e2022JD037415. doi:10.1029/2022JD037415

    • Yang XL, Zhou BT*, Xu Y, Han ZY (2023). CMIP6 evaluation and projection of precipitation over Northern China: Further investigation. Adv. Atmos. Sci., 40: 587-600. doi:10.1007/s00376-022-2092-4

    • Hu YP, Zhou BT*, Li HX, Han TT, Wang HJ (2023). Enhanced intensity of interannual variability of May drought in Northeast China after 2000 and its connection with the Barents Sea ice. J. Geophys. Res., 128: e2023JD039617. doi:10.1029/2023JD039617

    • Hu YP, Zhou BT*, Han TT, Li HX (2023). Enhanced linkage of summer drought in southern China to the North Pacific Oscillation since 2000. J. Geophys. Res., 128: e2022JD037432. doi:10.1029/2022JD03743

    • Song ZY, Zhou BT* (2023). CMIP6 projected response of the East Asian winter climate to the sea ice-free Arctic. Int. J. Climatol., 43: 1529-1542. doi: 10.1002/joc.7931

    • Zhang XL, Wang XX, Zhou BT* (2023). CMIP6-projected changes in drought over Xinjiang, Northwest China. Int. J. Climatol., 43: 6560-6577. doi: 10.1002/joc.8219

    • Makula EK, Zhou BT* (2023). Relationship between Antarctic sea ice and the variability of March to May precipitation in Tanzania. Int. J. Climatol., 43: 1382-1395. doi: 10.1002/joc.7921

    • Liu L,·Bai HM, Feng GL, Gong· ZQ*, Zhou BT* (2023). Evaluation and correction of sub-seasonal dynamic model forecast of precipitation in eastern China. Clim. Dyn., 61: 4643-4659. doi:10.1007/s00382-023-06788-6

    • Han TT, He SP, Zhou BT*, Li SF, Hao X (2023). Interdecadal changes in the linkage between North Pacific Oscillation during May and Northeast China precipitation during mid-summer: the influence of North Atlantic Oscillation. Earth's Future, 11: e2023EF003754. doi:10.1029/2023EF003754

    • Fan QW, Zhou BT* (2023). Linkage between the Asian-Pacific Oscillation and winter precipitation over southern China: CMIP6 simulation and projection. Atmos. Oceanic Sci. Lett., 16: 100401. doi:10.1016/j.aosl.2023.100401

    • Xu XP, He SP, Zhou BT, Wang HJ, Sun B (2023). Arctic warming and Eurasian cooling: weakening and reemergence. Geophys. Res. Lett., 50: e2023GL105180. doi:10.1029/2023GL105180

    • Jiang SL·Han TT, Zhou· BT,·Zhang QS, Hao X, Li HX (2023). Characteristics of clustered heavy precipitation events at Northeast China and associated atmospheric circulations. Clim. Dyn., 61: 5921-5933. doi:10.1007/s00382-023-06944-y

    • Han TT,·Tang GW, Zhou BT, Hao X, Li·SF (2023). Strengthened relationship between sea ice in East Siberian Sea and midsummer rainfall in Northeast China. Clim. Dyn., 60: 3749-3763. doi:10.1007/s00382-022-06537-1

    • Qian DW, Huang YY, Li HX, Zhou BT, Yin ZC, Wang HJ (2023). Decadal variations in the summer precipitation over eastern China associated with spring Arctic sea ice. J. Geophys. Res., 128: e2023JD039231. doi:10.1029/2023JD039231

    • Sun B, Xue RF, Li WL, Zhou SY, Li HX, Zhou BT, Wang HJ (2023). How does Mei-yu precipitation respond to climate change? National Science Review, 10: nwad246. doi:10.1093/nsr/nwad246

    • Li HX, Sun B, Wang HJ, Zhou BT, Ma XX (2023). Characteristics and mechanisms of the severe compound cold-wet event in southern China during February 2022. Environ. Res. Lett., 18: 114021. doi:10.1088/1748-9326/ad0163

    • Hu SZ, Hsu PC, Li WK, Wang L, Chen HS, Zhou BT (2023). Mechanisms of Tibetan Plateau warming amplification in recent decades and future projections. J. Clim., 36: 5775-5792. doi: 10.1175/JCLI-D-22-0471.1

    • Yin ZC, Zhou BT, Duan MK, Chen HS, Wang HJ (2023). Climate extremes become increasingly fierce in China. The Innovation, 4: 100406. doi:10.1016/j.xinn.2023.100406

    • Yin ZC, Zhang YJ, Zhou BT, Wang HJ (2023). Subseasonal variability and the “Arctic warming-Eurasia cooling” trend. Sci. Bull., 68: 528-535. doi:10.1016/j.scib.2023.02.009

    • Hao X, Wang HJ, Zhou BT, Li JD, Wei JF, Han TT (2023). Ocean surface warming pattern inhibits El Niño-induced atmospheric teleconnections. J. Clim., 36: 1521-1539. doi:10.1175/JCLI-D-22-0275.1

    • Li WL, Sun B, Wang HJ, Zhou BT, Li HX, Xue RF, Duan MK, Luo XC, Ai WW (2023). Anthropogenic impact on the severity of compound extreme high temperature and drought/rain events in China. npj Climate and Atmospheric Science, 6: 79. doi:10.1038/s41612-023-00413-3

    • Sun SL, Zhang YF, Chai RF, Liu Y, Mu MY, Zhou BT, Zhou Y, Li JJ, Chen HS (2023). Spatial differences in impacts of CO2 effect on China’s meteorological droughts: Analysis from surface resistance perspective. J. Hydrol., 621: 129568. doi:10.1016/j.jhydrol.2023.129568 

    • Wei JF, Liu XC, Zhou BT (2023). Sensitivity of vegetation to climate in mid-to-high latitudes of Asia and future vegetation projections. Remote Sens., 15: 2648. doi:10.3390/rs15102648

    • Peng XB, Yu M, Chen HS, Zhou BT, Shi Y, Yu L (2023). Projections of wildfire risk and activities under 1.5 and 2.0 global warming scenarios. Environ. Res. Commun., 5: 031002. doi:10.1088/2515-7620/acbf13

    • Wei JF, Su WT, Song YY, Sun SL, Zhou BT, Chen HS (2023). Intraseasonal-to-seasonal evolution of soil moisture-based droughts and floods in observation-based datasets and Coupled Model Intercomparison Project Phase 6 models. Int. J. Climatol., 43: 2096-2109. doi: 10.1002/joc.7965

    • Fan Y, Yao XN, Zhou BT*, Li HX, Liu M (2023). Decadal variation of the summer extreme high temperature days in northern Eurasia during 1960–2018. Front. Earth Sci., 10: 1076396. doi: 10.3389/feart.2022.1076396

    • Wei YC, Yu M, Wei JF, Zhou BT (2023). Impacts of extreme climates on vegetation in the middle to high latitudes in Asia. Remote Sens., 15: 1251. doi:10.3390/rs15051251

    • Kong Y, Xu XP, Zhou BT (2023). Synoptic-scale reversal of dipole surface temperature anomalies over East Asia and Central Siberia in November 2021. Atmos. Oceanic Sci. Lett., 16: 100327. doi:10.1016/j.aosl.2023.100327

    • 孙晓玲,谢文欣,周波涛* (2023). CMIP6模式对亚洲陆地生态系统的模拟评估与预估. 气候变化研究进展, 19 (1): 49-62

    • 孙博, 王会军, 黄艳艳, 尹志聪, 周波涛, 段明铿 (2023). 2022年夏季中国高温干旱气候特征及成因探讨. 大气科学学报, 46(1): 1-8

    • Sun Y, Chao QC, Zhou BT, Zhou TJ (2022). Explaining China’s climate in 2021. Adv. Clim. Change Res., 13: 769-771. doi:10.1016/j.accre.2022.12.001

    • Hu YP, Zhou BT*, Han TT, Li HX, Wang HJ (2022). In-phase variations of spring and summer droughts over Northeast China and their relationship with the North Atlantic Oscillation. J. Clim., 35: 3317-3331. doi:10.1175/JCLI-D-22-0052.1

    • Li HX, Sun B, Wang HJ, Zhou BT, Duna MK (2022). Mechanisms and physical-empirical prediction model of concurrent heatwaves and droughts in July–August over northeastern China. J. Hydrol., 614: 128535. doi:/10.1016/j.jhydrol.2022.128535

    • Zhou BT, Qian J, Zhou JW, Han TT, Sun B (2022). Strengthening of the relationship between West China Autumn Rain and arctic oscillation in the mid-1980s. Atmos. Res., 265: 105916. doi:10.1016/j.atmosres.2021.105916

    • Fan QW, Zhou BT*. (2022) Upper-tropospheric temperature pattern over the Asian-Pacific region in CMIP6 simulations: Climatology and interannual variability. Front. Earth Sci., 10: 917660. doi:10.3389/feart.2022.917660 

    • Xie WX, Zhou BT*, Han ZY, Xu Y (2022). Substantial increase in daytime-nighttime compound heat waves and associated population exposure in China projected by the CMIP6 multimodel ensemble. Environ. Res. Lett., 17: 045007. doi:10.1088/1748-9326/ac592d

    • Ajibola FO, Zhou BT*, Shahid S, Ali MA (2022). Performance of CMIP6 HighResMIP simulations on West African drought. Front. Earth Sci., 10: 925358. doi:10.3389/feart.2022.925358 

    • Makula EK, Zhou BT* (2022). Coupled Model Intercomparison Project phase 6 evaluation and projection of East African precipitation. Int. J. Climatol., 42: 2398-2412. doi: 10.1002/joc.7373

    • Makula EK, Zhou BT* (2022). Linkage of Tanzania short rain variability to sea surface temperature over the southern oceans. Front. Earth Sci., 10: 922172. doi:10.3389/feart.2022.922172 

    • Yan MC, Yue X, Zhou BT*, Sun XL, Xin N. (2022). Projected changes of ecosystem productivity and their responses to extreme heat events in northern Asia. Front. Earth Sci., 10: 970296. doi:10.3389/feart.2022.970296

    • Zhang DP, Huang YY, Zhou BT, Wang HJ (2022). Contributions of external forcing to the decadal decline of the South Asian high. Geophys. Res. Lett., 49: e2022GL099384. doi:10.1029/2022GL099384

    • Yu L, Zhou BT, Xu YQ, Zhang YX, Gu FX (2022). Projections of the net primary production of terrestrial ecosystem and spatiotemporal responses to climate change in the Yangtze River economic belt. Diversity, 14: 327. doi:10.3390/d14050327

    • Fan Y, Li JY, Zhu SP, Li HX, Zhou BT (2022). Trends and variabilities of precipitation and temperature extremes over Southeast Asia during 1981–2017. Meteorol. and Atmos. Phys., 34: doi:10.1007/s00703-022-00913-6

    • Zhu BY, Li HX, Sun B, Zhou BT, Duan MK (2022). Physical-empirical prediction model for the dominant mode of extreme high temperature events in eastern China during summer. Front. Earth Sci., 10: 989073. doi: 10.3389/feart.2022.989073

    • Xu XP, He SP, Zhou BT, Wang HJ (2022). Atmospheric contributions to the reversal of surface temperature anomalies between early and late winter over Eurasia. Earth's Future, 10: e2022EF002790. doi:10.1029/2022EF002790 

    • Xu XP, He SP, Zhou BT, Wang HJ, Outten S (2022). The role of mid-latitude westerly jet in the impacts of November Ural blocking on early-winter warmer Arctic-colder Eurasia pattern. Geophy. Res. Lett., 49: e2022GL099096. doi:10.1029/2022GL099096

    • Zhang DP, Huang YY, Zhou BT, Wang HJ (2022). Interdecadal changes of the South Asian High in CMIP5/6 and projection of its future changes. J. Clim., 35: 5661-5675. doi: 10.1175/JCLI-D-21-0921.1 

    • Sun SL, Liu YB, Chen HS, Ju WM, Xu CY, Liu Y, Zhou BT, Zhou Y, Zhou YL, Yu M (2022). Causes for the increases in both evapotranspiration and water yield over vegetated mainland China during the last two decades. Agricultural and Forest Meteorology, 324:109118. doi:10.1016/j.agrformet.2022.109118

    • Fan QY, Xu XP, He SP, Zhou BT (2022). The extreme Arctic warm anomaly in November 2020. Atmos. Oceanic Sci. Lett., 15: 100260. doi:10.1016/j.aosl.2022.100260

    • Wan Y, Yin ZC, Huo QY, Zhou BT, Wang HJ (2022). Weather extremes led to large variability in O3 pollution and associated premature deaths in East of China. Front. Earth Sci., 10: 947001. doi: 10.3389/feart.2022.947001

    • Duan WL, Zhou S, Christidis N, Schaller N, Chen YN, Netrananda S, Li Z, Fang GH, Zhou BT (2022). Changes in temporal inequality of precipitation extremes over China due to anthropogenic forcings. npj Climate and Atmospheric Science, 5: 33. doi:10.1038/s41612-022-00255-5

    • Zhang YJ, Yin ZC, Zhou BT, Wang HJ. (2022). Possible relationship between January "Warm Arctic-Cold Eurasia" and February haze in North China. J. Clim., 35: 4115-4130. doi: 10.1175/JCLI-D-21-0465.1

    • Dong X, Zhou Y, Chen HS, Zhou BT, Sun SL (2022). Lag impacts of abnormal July soil moisture over southern China on August rainfall over the Huang-Huai River Basin. Clim. Dyn., 58: 1737-1754. doi: 10.1007/s00382-021-05989-1

    • Sun B, Wang HJ, Li HX, Zhou BT, Duan MK, Li H (2022). A long-lasting precipitation deficit in South China during autumn-winter 2020/21: Combined effect of ENSO and Arctic sea ice. J. Geophys. Res., 127: e2021JD035584. doi:10.1029/2021JD035584

    • Yin ZC, Wang HJ, Liao H, Fan K, Zhou BT (2022). Seasonal to interannual prediction of air pollution in China: Review and insight. Atmos. Oceanic Sci. Lett., 15: 100131

    • 周波涛,蔡怡亨,韩振宇 (2022). 中国区域性暴雨事件未来变化: RegCM4动力降尺度集合预估. 地学前缘, 29(5): 410-419

    • Zhou BT, Wang ZY, Sun B, Hao X (2021). Decadal change of heavy snowfall over Northern China in the mid-1990s and associated background circulations. J. Clim., 34: 825-837. doi:10.1175/JCLI-D-19-0815.1

    • Zhou BT, Xu ML, Sun B, Han TT, Cheng ZG (2021). Possible role of Southern Hemispheric sea ice in the variability of West China autumn rain. Atmos. Res., 249: 105329. doi:10.1016/j.atmosres.2020.105329 

    • Makula EK, Zhou BT* (2021). Changes in March to May rainfall over Tanzania during 1978–2017. Int. J. Climatol., 41, 5663-5675. doi:10.1002/joc.7146

    • Hu YP, Zhou BT*, Han TT, Li HX, Wang HJ (2021). Out-of-phase decadal change in drought over Northeast China between early spring and late summer around 2000 and its linkage to the Atlantic sea surface temperature. J. Geophys. Res., 126: e2020JD034048. doi:10.1029/2020JD034048

    • Xie WX, Zhou BT*, Han ZY, Xu Y (2021). Projected changes in heat waves over China: Ensemble result from RegCM4 downscaling simulations. Int. J. Climatol., 41: 3865-3880. doi:10.1002/joc.7047

    • Yang XL, Zhou BT*, Xu Y, Han ZY (2021). CMIP6 evaluation and projection of temperature and precipitation over China. Adv. Atmos. Sci., 38: 817-830

    • Yin ZC, Zhou BT, Chen HP, Li YY (2021). Synergetic impacts of precursory climate drivers on interannual-decadal variations in haze pollution in North China: A review. Science of the Total Environment, 755: 143017. doi:10.1016/j.scitotenv.2020.143017 

    • Zhang DP, Huang YY, Zhou BT, Wang HJ (2021). Is there interdecadal variation in the South Asian High. J Clim., 34: 8089-8103. doi: 10.1175/JCLI-D-21-0059.1

    • Xu XP, He SP, Gao YQ, Zhou BT, Wang HJ (2021). Contributors to linkage between Arctic warming and East Asian winter climate. Clim. Dyn., 57: 2543-2555. doi:10.1007/s00382-021-05820-x   

    • Han TT, Guo XY, Zhou BT*, Hao X (2021). Recent changes in heavy precipitation events in northern central China and associated atmospheric circulation. Asia-Pacific J. Atmos. Sci., 57: 301-310. doi:10.1007/s13143-020-00195-1

    • Han TT, Zhang MH, Zhu JW, Zhou BT, Li SF (2021). Impact of early spring sea ice in Barents Sea on midsummer rainfall distribution at Northeast China. Clim. Dyn., 57: 1023-1037. doi:10.1007/s00382-021-05754-4 

    • Yang JQ, Chen HS, Song YD, Zhu SG, Zhou BT, Zhang J (2021). Atmospheric circumglobal teleconnection triggered by spring land thermal anomalies over West Asia and its possible impacts on early summer climate over North China. J. Clim., 34: 5999-6021. doi:10.1175/JCLI-D-20-0911.1

    • Sun B, Wang HJ, Wang AH, Miao Y, Zhou BT, Li HX (2021). Regularity and irregularity of the seasonal northward march of the East Asian summer wet environment and the influential factors. J. Clim., 34: 545-566. doi:10.1175/JCLI-D-20-0333.1

    • Sun B, Wang HJ, Wu BW, Xu M, Zhou BT, Li HX, Wang T (2021). Dynamic control of the dominant modes of interannual variability of snowfall frequency in China. J. Clim., 34: 2777-2790. doi:10.1175/JCLI-D-20-0705.1 

    • Zhu SG, Qi YJ, Chen HS, Gao CJ, Zhou BT, Zhang J, Wei JF (2021). Distinct impacts of spring soil moisture over the Indo-China Peninsula on summer precipitation in the Yangtze River basin under different SST backgrounds. Clim. Dyn., 56: 1895-1918. doi:10.1007/s00382-020-05567-x

    • Xu Y, Liu YJ, Han ZY, Zhou BT, Ding YH, Wu J, Tian TF, Li RK, Wang J (2021). Influence of human activities on wintertime haze-related meteorological conditions over the Jing–Jin–Ji region. Engineering, 7: 1185-1192. doi:10.1016/j.eng.2020.03.015

    • Liu L, Wang XJ, Feng GL, Dogar MM, Zhang F, Gong ZQ, Zhou BT (2021). Variation of main rainy-season precipitation in eastern China and relevance to regional warming. Int. J. Climatot., 41: 1767-1783. doi:10.1002/joc.6929

    • 周波涛(2021). 全球气候变暖: 浅谈AR5到AR6的认知进展. 大气科学学报, 44(5):667-671

    • 周波涛, 钱进 (2021). IPCC AR6报告解读:极端天气气候事件变化. 气候变化研究进展, 17 (6): 713-718

    • 李惠心, 孙博, 周波涛, 王树舟, 朱宝艳, 范怡 (2021). 3月巴伦支海海冰对中国东部8月气温偶极子型的影响及机制研究. 大气科学学报,  44(1): 89-103

    • 蔡怡亨, 韩振宇, 周波涛* (2021). 对基于RegCM4降尺度的中国区域性暴雨事件模拟评估. 气候变化研究进展,  17(4): 420-429

    • Zhou BT, Cheng Y, Han ZY, Xu Y, Wang XL (2020). Future changes of cluster high temperature events over China from RegCM4 ensemble under RCP4.5 scenario. Adv. Clim. Change Res., 11: 349-359. doi:10.1016/j.accre.2020.11.007

    • Xie WX, Zhou BT*, You QL, Zhang YQ, Ullah S (2020). Observed changes in heat waves with different severities in China during 1961-2015. Theor. Appl. Climatol., 141: 1529-1540. doi:10.1007/s00704-020-03285-2

    • Ajibola FO, Zhou BT*, Gnitou GT, Onyejuruwa A (2020). Evaluation of the performance of CMIP6 HighResMIP on West African precipitation. Atmosphere, 11: 1053, doi:10.3390/atmos11101053

    • Wang ZY, Ding YH, Zhou BT*, Chen LJ (2020). Comparison of two severe low-temperature snowstorm and ice freezing events in China: Role of Eurasian mid-high latitude circulation patterns. Int. J. Climatol., 40: 3436-3450. doi: 10.1002/joc.6406

    • Han TT, Zhang MH, Zhou BT, Hao X, Li SF (2020). Strengthened relationship between tropical West Pacific and midsummer precipitation over Northeast China after the mid-1990s. J. Clim.,  33: 6833-6848. doi:10.1175/JCLI-D-19-0957.1

    • Chen HS, Yu B, Zhou BT, Zhang WX, Zhang J (2020). Role of local atmospheric forcing and land-atmosphere interaction in recent land surface warming in the middle latitude over East Asia. J. Clim., 33, 2295-2309. doi: 10.1175/JCLI-D-18-0856.1

    • Luo JS, Chen HS, Zhou BT (2020). Comparison of snowfall variations over China identified from different snowfall/rain discrimination methods. J. Meteor. Res., 34: 1114-1128. doi:10.1007/s13351-020-0004-z

    • Wu J, Han ZY, Xu Y, Zhou BT, Gao XJ (2020). Changes in extreme climate events in China under 1.5°C-4°C global warming targets: projections using an ensemble of regional climate model simulations. J. Geophys. Res., 125: e2019JD031057. doi:10.1029/2019JD031057

    • Zhang WX, Chen HS, Zhou LM, Zhou BT, Zhang J, Wei JF (2020). Effects of nonuniform land surface warming on summer anomalous extratropical cyclone activity and East Asian summer monsoon: Numerical experiments with a regional climate model. J. Clim., 33: 10469-10488. doi: 10.1175/JCLI-D-20-0088.1

    • Xu Y, Zhang HQ, Liu YJ, Han ZY, Zhou BT (2020). Atmospheric rivers in the Australia–Asian region under current and future climate in CMIP5 models. Journal of Southern Hemisphere Earth Systems Science, 70: 88-105. doi:10.1071/ES1904

    • 周波涛, 徐影, 韩振宇, 石英, 吴佳, 李柔珂 (2020). “一带一路”区域未来气候变化预估. 大气科学学报, 43(1): 255-264

    • 程阳, 周波涛*, 韩振宇, 徐影(2020).  一组RegCM4动力降尺度对中国群发性高温事件的模拟评估. 气候变化研究进展, 16(6): 657-666

    • 徐曼琳, 周波涛*, 程志刚(2020). 2010年以来华西秋季降水年代际增多原因初探. 大气科学学报, 43(3): 568-576

    • 孙博, 王会军, 周波涛, 李惠心, 朱宝艳 (2020). 中国水汽输送年际和年代际变化研究进展. 水科学进展31(5): 644-653

    • 罗勇, 秦大河, 翟盘茂, 马丽娟, 周波涛, 徐新武 (2020). 方兴未艾的冰冻圈科学分支学科-冰冻圈气候学. 中国科学院院刊, 35(4): 407-431

    • Zhou BT, Wu J, Xu Y, Han ZY, Shi Y (2019). Projected changes in autumn rainfall over West China: results from an ensemble of dynamical downscaling simulations. Int. J. Climatol., 39: 4869-4882. doi: 10.1002/joc.6115

    • Zhou BT, Wang ZY (2019). Enlightenment from heavy autumn rain of West China in 2017: synergic role of atmospheric circulation at mid-high latitudes and oceanic background. Theor. Appl. Climatol., 138: 263-274. doi: 10.1007/s00704-019-02809-9

    • Wang ZY, Zhou BT* (2019). Observed decadal transition in trend of autumn rainfall over Central China in the late 1990s. J. Clim., 32: 1395-1409. doi: 10.1175/JCLI-D-18-0112.1

    • Sun B, Li HX, Zhou BT* (2019). Interdecadal variation of Indian Ocean basin mode and the impact on Asian summer climate. Geophys. Res. Lett., 46: 12388-12397. doi:10.1029/2019GL085019

    • Sun B, Wang HJ, Zhou BT*, Li H (2019). Interdecadal variation in the synoptic features of Mei-Yu in the Yangtze River valley region and relationship with the Pacific Decadal Oscillation. J. Clim., 32: 6251-6270. doi:10.1175/JCLI-D-19-0017.1

    • Sun B, Wang HJ, Zhou BT* (2019). Climatic condition and synoptic regimes of two intense snowfall events in eastern China and implications for climate variability. J. Geophys. Res., 124: 926-941. doi: 10.1029/2018JD029921

    • Zhang C, Wang ZY, Zhou BT*, Li YH, Tang HY, Xiang B (2019). Trends in autumn rain of West China from 1961 to 2014. Theor. Appl. Climatol., 135: 533-544. doi: 10.1007/s00704-017-2361-9

    • Han ZY, Shi Y, Wu J, Xu Y, Zhou BT* (2019). Combined dynamical and statistical downscaling for high-resolution projections of multiple climate variables in the Beijing-Tianjin-Hebei region of China. J. Appl. Meteorol. Climatol., 58: 2387-2403. doi: 10.1175/JAMC-D-19-0050.1

    • Sun B, Wang HJ, Zhou BT (2019). Interdecadal variation of the relationship between East Asian water vapor transport and tropical Pacific sea surface temperatures during January and associated mechanisms. J. Clim., 32: 7575-7594. doi:10.1175/JCLI-D-19-0290.1

    • Chen HS, Zhan WX, Zhou BT, Teng FD, Zhang J, Zhou Y (2019). Impact of nonuniform land surface warming on summer anomalous extratropical cyclone activity over East Asia. J. Geophys. Res., 124: 10306-10320. doi:10.1029/2018JD030165

    • Xu B, Chen HS, Gao CJ, Zhou BT, Sun SL, Zhu SG (2019). Regional response of winter snow cover over the Northern Eurasia to late autumn Arctic sea ice and associated mechanism. Atmos. Res., 222: 100-113. doi:10.1016/j.atmosres.2019.02.010

    • Duan WL, Hanasaki N, Shiogama H, Chen Y, Zou S, Nover D, Zhou BT, Wang Y (2019). Evaluation and future projection of Chinese precipitation extremes using large ensemble high-resolution climate simulations. J. Clim., 32: 2169-2183. doi: 10.1175/JCLI-D-18-0465.1

    • 徐雨晴, 周波涛*, 於琍, 徐影 (2019). 1961-2010年中国气候生产潜力时空格局变化及其潜在可承载人口分析. 气象与环境学报, 35(2): 84-91 

    • 徐雨晴,於 琍, 周波涛*,石英, 徐影 (2019). 气候变化背景下未来中国气候生产潜力时空动态格局 . 干旱区资源与环境, 33(9): 72-80

    • 石英,韩振宇,徐影,周波涛,吴佳 (2019). 6.25 km高分辨率降尺度数据对雄安新区及整个京津冀地区未来极端气候事件的预估. 气候变化研究进展, 15(2): 140-149

    • 沙祎, 徐影, 韩振宇, 周波涛 (2019). 人类活动对1961~2016年长江流域降水变化的可能影响. 大气科学, 43(6): 1265-1279.

    • Zhou BT, Wang ZY, Shi Y, Xu Y, Han ZY (2018). Historical and future changes of snowfall events in China under a warming background. J.  Clim., 31: 5873-5889. doi:10.1175/JCLI-D-17-0428.1

    • Zhou BT, Xu Y, Shi Y (2018). Present and future connection of Asian-Pacific Oscillation to large-scale atmospheric circulations and East Asian rainfall: Results of CMIP5. Clim. Dyn., 50:17-29. doi: 10.1007/s00382-017-3579-z

    • Lu CH, Zhou BT (2018). Influences of the 11-year sunspot cycle and polar vortex oscillation on the observed winter temperature variations in China. J. Meteor. Res., 32: 367-379. doi: 10.1007/s13351-018-7101-2

    • Xu Y, Gao XJ, Giorgi F, Zhou BT, Shi Y, Wu J, Zhang YX (2018). Projected changes in temperature and precipitation extremes over China as measured by 50-year return values and periods based on CMIP5 ensemble. Adv. Atmos. Sci.,  35: 376-388. doi:10.1007/s00376-017-6269-1

    • Shi Y, Zhang D, Xu Y, Zhou BT (2018). Changes of heating and cooling degree days over China in response to global warming of 1.5°C, 2°C, 3°C and 4°C. Adv. Clim. Change Res., 9: 192-200

    • 王遵娅, 周波涛* (2018). 影响中国北方强降雪事件年际变化的典型环流背景和水汽收支特征分析. 地球物理学报, 61(7): 2654-2666. doi: 10.6038/cjg2018L0405

    • 张永香, 巢清尘, 李婧华, 黄磊, 周波涛 (2018). 气候变化科学评估与全球治理的博弈对中国的启示. 科学通报, 63(23): 2313-2319.

    • 徐雨晴,周波涛,於琍,石英,徐影 (2018). 气候变化背景下中国未来森林生态系统服务价值的时空特征. 生态学报, 38(6): 1952-1963

    • 香薇, 程志刚, 周波涛, 宾昕, 冯冬蕾 (2018). 近40年秦巴山区极端气温事件的时空变化特征分析. 气候变化研究进展, 14(4): 362-370

    • 周建琴, 黄玮, 朱勇, 李蒙, 周波涛 (2018). 云南气候舒适度分布和变化特征及未来变化趋势预估. 气候变化研究进展, 14(2): 144-154

    • Zhou BT, Wang ZY, Shi Y (2017). Possible role of Hadley circulation strengthening in interdecadal intensification of snowfalls over northeastern China under climate change. J. Geophys. Res., 122: 11638-11650. doi:10.1002/2017JD027574

    • Zhou BT, Xu Y (2017). How the "best" CMIP5 models project relations of Asian-Pacific Oscillation to circulation backgrounds favorable for tropical cyclone genesis over the western North Pacific. J. Meteor. Res., 31: 107-116. doi:10.1007/s13351-017-6088-4

    • Zhou BT, Xu Y (2017). CMIP5 analysis on the interannual variability of the Pacific SST and its association with the Asian-Pacific oscillation. Atmos. Oceanic Sci. Lett., 10: 138-145. doi: 10.1080/16742834.2017.1260427

    • Han ZY, Zhou BT*, Xu Y, Wu J, Shi Y (2017). Projected changes in haze pollution potential in China: An ensemble of regional climate model simulations. Atmos. Chem. Phys., 17: 10109-10123. doi: 10.5194/acp-17-10109-2017

    • Ren YJ, Zhou BT*, Song LC, Xiao Y (2017). Interannual variability of western North Pacific subtropical high, East Asian jet and East Asian summer precipitation: CMIP5 simulation and projection. Quaternary International, 440: 64-70. doi:10.1016/j.quaint.2016.08.033

    • Wang YJ, Zhou BT*, Qin DH, Wu J, Gao R, Song LC (2017). Changes in mean and extreme temperature and precipitation over the arid region of northwestern China: observation and projection. Adv. Atmos. Sci., 34: 287-305. doi:10.1007/s00376-016-6160-5

    • Xu Y, Zhou BT*, Wu J, Han ZY, Zhang YX, Wu J (2017). Asian climate change under 1.5-4°C warming targets. Adv. Clim. Change Res., 8: 99-107. doi:10.1016/j.accre.2017.05.004

    • Wang ZY, Yang S, Zhou BT (2017). Preceding features and relationship with possible affecting factors of persistent and extensive icing events in China. Int. J. Climatol., 37: 4105-4118. doi :10.1002/joc.5026

    • Wang ZY, Ding YH, Lu M, Zhou BT, Yang S, Jiang XW, Ke ZJ (2017). Intraseasonal variability and predictability of the subtropical Asian summer rain band. Int. J. Climatol., 37: 4119-4130. doi:10.1002/joc.5033

    • 王政琪, 徐影, 周波涛* (2017). CMIP5模式对东亚冬季风指数变化及其与冬季大气环流和气温关系的模拟评估. 地球物理学报, 60(9): 3315-3324. doi:10.6038/cjg20170904

    • 吴婕, 徐影, 周波涛 (2017). CMIP5全球气候模式对中国上空空气静稳日数模拟能力评估. 地球物理学报, 60(4): 1293-1304. doi: 10.6038/cjg20170406

    • 张永香, 黄磊, 周波涛, 徐影, 巢清尘 (2017). 1.5℃全球温控目标浅析. 气候变化研究进展, 13(4): 299-305

    • 徐雨晴, 於琍, 周波涛, 石英, 徐影 (2017). 气候变化背景下未来中国草地生态系统服务价值时空动态格局. 生态环境学报, 26(10): 1649-1658

    • 岳溪柳,於琍,黄玫,吴绍洪,周波涛,徐影 (2017). 人类活动影响下的北京地区气候承载力初步评估. 气候变化研究进展, 13(6): 517-524

    • Zhou BT (2016). The Asian–Pacific Oscillation pattern in CMIP5 simulations of historical and future climate. Int. J. Climatol., 36: 4778-4789. doi: 10.1002/joc.4668

    • Zhou BT, Shi Y, Xu Y (2016). CMIP5 simulated change in the intensity of the Hadley and Walker circulations from the perspective of velocity potential. Adv. Atmos. Sci., 33: 808-818. doi: 10.1007/s00376-016-5216-x

    • Zhou BT, Xu Y, Wu J, Dong SY, Shi Y (2016). Changes in temperature and precipitation extreme indices over China: Analysis of a high-resolution grid dataset. Int. J. Climatol., 36: 1051-1066, doi: 10.1002/joc.4400

    • Lu CH, Zhou BT*; Ding YH (2016). Decadal variation of the Northern Hemisphere annular mode and its influence on the East Asian trough. J. Meteor. Res., 30: 584-597. doi: 10.1007/s13351-016-5105-3

    • Sun Y, Song LC, Yin H, Zhang XB, Scott P, Zhou BT, Hu T (2016). Human influence on the 2015 extreme high temperature in western China. Bull. Amer. Meteor. Soc., 97: S102-S106. doi:10.1175/BAMS-D-16-0158.1

    • 王玉洁, 周波涛, 任玉玉, 孙丞虎 (2016). 全球气候变化对我国气候安全影响的思考. 应用气象学报, 27(6): 750-758

    • 吴婕,徐影,周波涛 (2016). ACCMIP全球模式对中国地面PM2.5浓度模拟能力评估. 气候变化研究进展, 12(4): 268-275

    • 王玉洁, 陈克垚, 周波涛, 李威, 朱飚 (2016). 气候变化知识传播之思考. 气候变化研究进展, 12(2): 162-166

    • Zhou BT, Wang Z (2015). On the significance of the interannual relationship between the Asian-Pacific Oscillation and the North Atlantic Oscillation. J. Geophys. Res., 120: 6489-6499. doi:10.1002/2015JD023328

    • Song LC, Sun Y, Dong SY, Zhou BT, Stott P, Ren GY (2015). Role of anthropogenic forcing in 2014 hot spring in Northern China. Bull. Amer. Meteor. Soc., 96: S111-S114. doi: 10.1175/BAMS-D-15-00111.1

    • Dong S, Xu Y, Zhou BT, Shi Y (2015). Assessment of indices of temperature extremes simulated by multiple CMIP5 models over China. Adv. Atmos. Sci., 32: 1077-1091. doi: 10.1007/s00376-015-4152-5

    • Xu Y, Gao XJ, Shi Y, Zhou BT (2015). Detection and attribution analysis of annual mean temperature changes in China. Clim. Res., 63: 61-71. doi: 10.3354/cr01283

    • Xu Y, Wu J, Shi Y, Zhou BT, Li RK, Wu J (2015). Change in extreme climate events over China based on CMIP5. Atmos. Oceanic Sci. Lett., 8: 185-192. doi: 10.3878/AOSL20150006

    • Zhou BT, Chao QC, Huang L (2015). The core conclusions and interpretation of Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Chinese Journal of Urban and Environmental Studies, 3: 1550003. doi: 10.1142/S2345748115500037

    • 吴佳, 周波涛*, 徐影 (2015).中国平均降水和极端降水对气候变暖的响应: CMIP5模式模拟评估和预估. 地球物理学报, 58(9): 3048-3060. doi: 10.6038/cjg20150903

    • 孙颖, 秦大河, 周波涛 (2015). 未来气候变化科学研究的主要方向和挑战. 气候变化研究进展, 11 (5): 324-330

    • Qin DH, Zhou BT, Xiao CD (2014). Progress in studies of cryospheric changes and their impacts on climate of China. J. Meteor. Res., 28(5): 732-746 [秦大河, 周波涛, 效存德. 冰冻圈变化及其对我国气候的影响. 气象学报, 2014, 72(5):869-879]

    • Zhou BT, Wen HQ, Xu Y, Song LC, Zhang XB (2014). Projected changes in temperature and precipitation extremes in China by the CMIP5 multimodel ensembles. J. Clim., 27: 6591-6611. doi: 10.1175/JCLI-D-13-00761.1

    • Zhou BT, Cui X (2014). Interdecadal change of the linkage between the North Atlantic Oscillation and the tropical cyclone frequency over the western North Pacific. Science China: Earth Sciences, 57: 2148-2155    [周波涛, 崔绚. 北大西洋涛动与西北太平洋热带气旋频数关系的年代际变化. 中国科学: 地球科学, 2014. 44(5): 1026-1033]

    • 秦大河, 周波涛 (2014). 气候变化与环境保护. 科学与社会, 2: 19-26

    • 巢清尘, 周波涛, 孙颖, 张永香, 黄磊 (2014). IPCC 气候变化自然科学认知的发展. 气候变化研究进展, 10(1): 7-13

    • 董思言, 徐影, 周波涛, 侯美亭, 李柔珂, 於琍, 张永香 (2014). 基于CMIP5模式的中国地区未来高温灾害风险预估. 气候变化研究进展, 10(5): 365-369

    • 徐影, 张冰, 周波涛, 董思言, 於琍, 李柔珂 (2014). 基于CMIP5模式的中国地区未来洪涝灾害风险变化预估. 气候变化研究进展, 10(4): 268-275

    • Zhou BT, Zhao P (2013). Simulating changes of spring Asian-Pacific oscillation and associated atmospheric circulation in the mid-Holocene. Int. J. Climatol., 33: 529-538. doi: 10.1002/joc.3438

    • Zhou BT (2013). Weakening of winter North Atlantic Oscillation signal in spring precipitation over southern China. Atmos. Oceanic Sci. Lett., 6: 248-252

    • 孙颖, 尹红, 田沁花, 胡婷, 石英, 刘洪滨, 周波涛 (2013). 全球和中国区域近50年气候变化检测归因研究进展. 气候变化研究进展, 9(4): 235-245

    • Zhou BT, Xia DD (2012). Interdecadal change of the connection between winter North Pacific Oscillation and summer precipitation in the Huaihe River valley. Science China: Earth Sciences, 55(12): 2049-2057    [周波涛, 夏冬冬. 淮河流域夏季降水与前冬北太平洋涛动联系的年代际变化. 中国科学-地球科学, 2013, 43(4): 547-555]

    • Zhou BT (2012). Model evaluation and projection on the linkage between Hadley circulation and atmospheric background related to the tropical cyclone frequency over the western North Pacific. Atmos. Oceanic Sci. Lett., 5(6): 473-477

    • Zhou BT, Zhang Li (2012). A simulation of the upper-tropospheric temperature pattern in BCC_CSM1.1. Atmos. Oceanic Sci. Lett., 5(6): 478-482

    • 周波涛 (2012). 全球变暖背景下春季Hadley环流与东亚夏季风环流年际对应关系的多模式预估. 地球物理学报, 55(11): 3517-3526

    • 周波涛 (2012). 气候系统模式对Hadley环流的模拟和未来变化预估. 气候与环境研究, 17(3): 339-352.

    • 周波涛, 於琍 (2012). 管理气候灾害风险, 推进气候变化适应. 中国减灾, 174: 18-19

    • Zhou BT (2011). Linkage between winter sea surface temperature east of Australia and summer precipitation in the Yangtze River valley and a possible physical mechanism. Chin. Sci. Bull., 56(17): 1821-1827    [周波涛. 冬季澳大利亚东侧海温与长江流域夏季降水的联系及可能物理机制. 科学通报, 2011, 56(16): 1301-1307]

    • Zhou BT, Cui X (2011). Sea surface temperature east of Australia: A predictor of tropical cyclone frequency over the western North Pacific? Chin. Sci. Bull., 56: 196-201    [周波涛, 崔绚. 澳大利亚东侧海温: 西北太平洋热带气旋生成频数的预测信号? 科学通报, 2010, 55(31): 3053-3059]

    • Zhou BT, Zhao P (2010). Modeling variations of summer upper tropospheric temperature and associated climate over the Asian Pacific region during the mid-Holocene. J. Geophys. Res., 115: D20109. doi:10.1029/2010JD014029

    • Zhou BT, Zhao P (2010) . Influence of the Asian-Pacific oscillation on spring precipitation over central eastern China. Adv. Atmos. Sci., 27: 75-582. doi: 10.1007/s00376-009-9058-7

    • Zhou BT, Zhao P, Cui X (2010). Linkage between the Asian-Pacific Oscillation and the sea surface temperature in the North Pacific. Chin. Sci. Bull., 55: 1193-1198    [周波涛, 赵平, 崔绚. 亚洲-太平洋涛动变化与北太平洋海温异常的联系. 科学通报, 2010, 55(1): 74-79]

    • 崔绚, 周波涛*, 范可 (2010). 卑尔根气候模式中亚洲—太平洋涛动和影响西北太平洋热带气旋频数的环流背景的关系. 气候与环境研究, 15(2): 120-128

    • Zhou BT, Zhao P (2009). Inverse correlation between ancient winter and summer monsoons in East Asia? Chin. Sci. Bull., 54: 3760-3767    [周波涛, 赵平. 古东亚冬季风和夏季风反位相变化吗? 科学通报, 2009, 54(20): 3136-3143]

    • 周波涛, 崔绚 (2009). 春季Hadley环流异常对夏季西北太平洋热带气旋频数影响的数值模拟试验. 地球物理学报, 52(12): 2958-2963

    • 周波涛, 赵平 (2009). 中全新世时期我国西南风气候季节演变的数值模拟结果分析. 第四纪研究, 29(2): 211-220

    • Zhou BT, Wang HJ (2008). Interdecadal change in the connection between Hadley circulation and winter temperature in East Asia. Adv. Atmos. Sci., 25(1): 24-30

    • Zhou BT, Cui X (2008). Hadley circulation signal in the tropical cyclone frequency over the western North Pacific. J. Geophys. Res., 113: D16107, doi:10.1029/2007JD009156

    • Zhou BT, Cui X, Zhao P (2008). Relationship between the Asian-Pacific oscillation and the tropical cyclone frequency in the western North Pacific. Science in China Series D-Earth Sciences, 51(3): 380-385    [周波涛, 崔绚, 赵平. 亚洲-太平洋涛动与西北太平洋热带气旋频数的关系. 中国科学D辑: 地球科学, 2008, 38(1): 118-123]

    • Zhou BT, Wang HJ (2008). Relationship between Hadley Circulation and Sea Ice Extent in the Bering Sea. Chin. Sci. Bull., 53(3): 444-449    [周波涛, 王会军. Hadley环流变化与白令海海冰异常的关系. 科学通报, 2007, 52(18): 2194-2198]

    • 周波涛, 王会军, 崔绚 (2008). Hadley环流与北太平洋涛动的显著关系. 地球物理学报, 51(4): 999-1006

    • 周波涛, 崔绚 (2008). 春季Hadley环流与长江流域夏季降水关系的数值模拟. 气候与环境研究, 13(2): 182-188

    • Zhao P, Chen JM, Xiao D, Nan SL, Zou Y, Zhou BT (2008). Summer Asian-Pacific Oscillation and its relationship with atmospheric circulation and monsoon rainfall. Acta Meteorologica Sinica, 22(4): 455-471    [赵平, 陈军明, 肖栋, 南素兰, 邹燕, 周波涛. 夏季亚洲-太平洋涛动与大气环流和季风降水. 气象学报, 2008, 66(5): 716-729.] 

    • Zhou BT, Wang HJ (2006). Relationship between the boreal spring Hadley circulation and the summer precipitation in the Yangtze River valley. J. Geophys. Res., 111: D16109. doi:10.1029/2005JD007006

    • 周波涛, 王会军 (2006). Hadley环流的年际和年代际变化特征及其与热带海温的关系. 地球物理学报, 49(5): 1271-1278

    • Zhou BT, Zhao P, Jian Z, He JH (2005). Modeling the impact of Australian Plate drift on Southern Hemisphere climate and environment. Chin. Sci. Bull., 50 (14): 1495-1502    [周波涛, 赵平, 翦知湣, 何金海. 澳大利亚板块漂移对南半球气候与环境影响的数值模拟. 科学通报, 2005, 50 (9): 904-911]

    • 周波涛, 赵平, 何金海, 王会军 (2004). 14MaB.P.澳大利亚板块对赤道太平洋影响的数值模拟. 第四纪研究, 24(6): 716-723

    • 周波涛, 何金海, 陈隆勋, 赵平 (2004). GISS海气耦合模式的基本气候态评估. 应用气象学报, 15(4): 500-505



    参与编写的专著

    2023: 天有可测风云. 中国少年儿童出版社

    2022: 中国北方地区极端气候的变化及成因. 气象出版社

    2021: 中国气候与生态环境演变:2021. 科学出版社

    2021: 一带一路区域气候变化灾害风险. 气象出版社

    2019:  中国气候. 气象出版社

    2018:气候变化科学概论. 科学出版社

    2017:气候变化应对与生态文明建设. 国家行政学院出版社

    2017:中国气候变化监测公报. 科学出版社

    2017:应对气候变化报告—坚定推动落实《巴黎协定》. 社会科学文献出版社

    2016:应对气候变化报告—《巴黎协定》重在落实. 社会科学文献出版社

    2015:第三次气候变化国家评估报告. 科学出版社

    2015:中国极端天气气候事件和灾害风险管理与适应国家评估报告. 科学出版社

    2015:中国未来极端气候事件变化预估图集. 气象出版社

    2014:云南未来10-30年气候变化预估及其影响. 气象出版社

    2014:应对气候变化报告—科学认知与政治争锋. 社会科学文献出版社

    2013:应对气候变化报告—聚焦低碳城镇化. 社会科学文献出版社

    2012:  Resilient People, Resilient Planet: A future worth choosing. United Nations

    2011:应对气候变化报告—德班的困境与中国的战略选择. 社会科学文献出版社

    2010:应对气候变化报告—坎昆的挑战与中国的行动. 社会科学文献出版社

    2008:2008年初我国南方低温雨雪冰冻灾害及气候分析. 气象出版社

  • 主持的科研项目:  

    2023-2028年:国家重点研发计划项目 “长江流域复合型气候极端事件影响机理与风险预估”(项目负责人)
    2021-2025年:国家杰出青年科学基金“中高纬气候变化机理与预估”(项目负责人)
    2020-2024年:国家自然基金重大项目课题“极端气候对亚洲中高纬区生态系统的影响”(课题负责人)
    2018-2023年:国家重点研发计划项目课题“京津冀地区气候和极端事件的未来演变规律研究”(课题负责人)
    2017-2020年:国家自然基金项目“全球变暖背景下华西秋雨的演变规律及与极区气候系统变化的联系”(项目负责人)
    2017-2018年:中国气象局气候变化专项“气候变化决策支撑研究”(项目负责人)
    2016-2021年:国家重点研发计划项目课题“中国北方地区极端气候的年际变化及机制”(专题负责人)
    2013-2016年:国家自然基金项目“全球变暖背景下高层大气遥相关的演变及其对区域气候的影响(项目负责人)
    2014-2015年:中国气象局气候变化专项“RCP情景下中国极端气候变化及降尺度应用研究”(项目负责人)
    2013-2015年:气象行业专项“中高纬海洋异常对东亚冬季气候的影响及其在预测中的应用(课题负责人)
    2012-2015年:国家科技支撑课题“IPCC第五次评估对我国应对气候变化战略的影响”(课题负责人)
    2011-2011年:中国气象局气候变化专项“国内外气候变化形势和重大事件跟踪分析”(项目负责人)
    2009-2012年:气象行业专项“关键海区SST对我国气候异常的影响及短期气候预测新方法研究”(课题负责人)
    2009-2011年:国家自然基金项目“全球变暖背景下Hadley环流的演变及其对东亚气候的影响”(项目负责人)
    2009-2013年:国家973项目课题“全球变暖对我国未来极端气候影响的评估和预测研究”(专题负责人)
    2009-2010年:中科院知识创新工程领域前沿项目“中低纬环流对西太平洋台风活动的影响及机理研究”(项目负责人)