
Paper Publications
-
[1] 基于有限体积法的伴随数值模型研究.水动力学研究与进展.2009,24(6):807-814
-
[2] 利用伴随法反演风应力系数.南京气象学院学报.2008,31(6):879-882
-
[3] 网络辅助教学系统的设计与开发.气象教育与科技.2008,31(3-4):11-15
-
[4] A Multi-Time-Scale Four-Dimensional Variational Data Assimilation Scheme and its Application to Simulated Radial Velocity and Reflectivity Data.Monthly Weather Review.2020,148(5):2063-2085
-
[5] Dynamic Channel Selection of Microwave Temperature Sounding Channels under Cloudy Conditions.REMOTE SENSING.2020,12(3):19p
-
[6] Data assimilation of a dense wind profiler network and its impact on convective forecasting.ATMOSPHERIC RESEARCH.2020,238(-):12p
-
[7] The impact of optimal selected historical forecasting samples on hybrid ensemble-variational data assimilation.Atmospheric Research.2020,online(-)
-
[8] Case Study of a Retrieval Method of 3D Proxy Reflectivity from FY-4A Lightning Data and Its Impact on the Assimilation and Forecasting for Severe Rainfall Storms.Remote Sensing.2020,online(doi:10.3390/rs12071165)
-
[9] 基于变分理论的AVHRR海表温度反演应用及效果评估.海洋学报.2018,40(2):30-42
-
[10] The evaluation of EnVar method including hydrometeors analysis variables for assimilating cloud liquid/ice water path on prediction of rainfall events.Atmospheric Research.2019,219(-):1-12
-
[11] 二阶伴随模型的构造.河海大学学报(自然科学版).2008,36(2)
-
[12] 雷达观测对应模式变量非线性特征及对四维变分同化的影响.热带气象学报.2018,34(6):721-732
-
[13] Dissipative Petviashvili equation for the two-dimensional Rossby waves and its solutions.Advances in Mechanical Engineering.2017,9(11)
-
[14] The Boussinesq-BO equation for algebraic gravity solitary waves in baroclinic atmosphere and the research of squall lines formation mechanism.Dynamics of Atmospheres and Oceans.2017,80(2017):29-46
-
[15] 各向异性背景场误差协方差构建及在“凡亚比”台风的应用.海洋学报.2016,38(9):32-45
|

 ZipCode:b346d0675242a654d629a358c6373406b1464319418b2db495c5cc369db827326b199cca0e35d166070c23e93ac67acba343c6c54fa522c136e32578cd34ee6a26e440a0c04dd66420538326e06d66a9e17d71563904414f3ae473e19b28a00235ff63e9428fff16b327a48c4f28bf2d6e113b390de13e82dad743c8b4dafe54
 OfficePhone:a802813b205b5e26e0fd62e4fbf5991f9c0730cf7bae95e5f4d20f9f52808386807d87d1eaddac9a9145064dce9fc31627ae6f22adb7c3cad88706879d4f61d41269b63437766345850ff32411c3bc26c4238c01b19466120f54d15a9602b6a5e091993fa3e1cc79bd2b0c5594292c7c705314995ea210012dc0b4e7d44237d7
|