何鹏飞讲师(高校)

25

职称:讲师(高校)

性别:男

毕业院校:中国矿业大学

所在单位:遥感与测绘工程学院

办公地点:北辰楼215

联系方式:gopfhe@nuist.edu.cn

   

研究领域

当前位置: 中文主页 >> 科学研究 >> 研究领域

Interests

Regional/global land surface feature detection and dynamic monitoring based on multi-source geospatial data and intelligent algorithms


Project Chaired 

Research on high-resolution remotely sensed image change detection based on visual mechanisms, funded by  the Natural Science Foundation of Jiangsu Province (BK20190785), July 2019 June 2023. 

Super-pixel-based unsupervised change detection, funded by the Fundamental Research Funds for the Central  Universities of China (2017BSCXB39), Jan 2017 Jan 2018.


Awards 

• Second Prize in the National Teaching Innovation Competition for Teachers Majoring in Surveying and Mapping, Aug. 2024. 

• First Prize in the National Lecture Competition for Young Teachers Majoring in Surveying and Mapping, Jul. 2022. 

• First Prize in the National Teaching Innovation Competition for Teachers Majoring in Surveying and Mapping, Jul. 2022. 

• Second Prize in the Teaching Innovation Competition at NUIST, Sep. 2021.


Publications

• Yang, F., He, P., Wang, H., Hou, D., Li, D., and Shi, Y. Long-term, high-resolution GPP mapping in Qinghai  using multi-source data and google earth engine. International Journal of Digital Earth, 2023; 16(2), 4885- 4905. https://doi.org/10.1080/17538947.2023.2288131 

Yang, F., He, P., Ding, H., and Shi, Y. A monthly high-resolution net primary productivity dataset (30 m) of  Qinghai Plateau from 1987 to 2021. IEEE Journal of Selected Topics in Applied Earth Observations and  Remote Sensing, 2023; 16, 8262-8273. https://doi.org/10.1109/JSTARS.2023.3312518 

He, P., Shi, Y., Ding, H., and Yang, F. Classification and transition of grassland in Qinghai, China, from 1986  to 2020 with Landsat archives on Google Earth Engine. Land, 2023; 12(9), 1686. https://doi.org/10.3390/land12091686 

Shi M., He P., Shi Y. Detecting extratropical cyclones of the northern hemisphere with Single Shot  Detector. Remote Sensing, 2022; 14(2):254. https://doi.org/10.3390/rs14020254 

Peng, D., Bruzzone, L., Zhang, Y., Guan, H. and He, P. SCDNET: A novel convolutional network for semantic  change detection in high resolution optical remote sensing imagery. International Journal of Applied Earth  Observation and Geoinformation, 2021;103:102465. https://doi.org/10.1016/j.jag.2021.102465 

He, P., Zhao, X., Shi, Y., Cai, L. Unsupervised change detection from remotely sensed images based on  multi-scale visual saliency coarse-to-fine fusion. Remote Sensing. 2021;13, 630. https://doi.org/10.3390/rs13040630 

He, P., Shi, W., & Zhang, H. Adaptive superpixel based Markov random field model for unsupervised change  detection using remotely sensed images. Remote Sensing Letters, 2018; 9(8), 724- 732. https://doi.org/10.1080/2150704X.2018.1470698 

Hao, M., Shi, W., Deng, K., Zhang, H. and He, P., 2016. An object-based change detection approach using  uncertainty analysis for VHR images. Journal of Sensors, 2016; https://doi.org/10.1155/2016/9078364 

Shao, P.; Shi, W.; He, P.; Hao, M.; Zhang, X. Novel approach to unsupervised change detection based on a  robust semi-supervised FCM clustering algorithm. Remote Sensing. 2016, 8,  264. https://doi.org/10.3390/rs8030264 

Shi, W., Shao, P., Hao, M., He, P. and Wang, J. Fuzzy topology–based method for unsupervised change  detection. Remote Sensing Letters, 2016; 7(1), 81-90. https://doi.org/10.1080/2150704X.2015.1109155 

He, P., Shi, W., Miao Z. Zhang, H., Can L. Advanced Markov Random field model based on local uncertainty  for unsupervised change detection. Remote Sensing Letters, 2015; 6(9), 667- 676. https://doi.org/10.1080/2150704X.2015.1054045 

Cai, L., Shi, W., He, P., Miao Z., Hao, M., Zhang, H., Can L. Fusion of multiple features to produce a  segmentation algorithm for remote sensing images. Remote Sensing Letters, 2015; 6(5), 390- 398.https://doi.org/10.1080/2150704X.2015.1037467

 He, P., Shi, W., Zhang, H., Hao M. A novel dynamic threshold method for unsupervised change detection  from remotely sensed images. Remote Sensing Letters, 2014; 5(4), 396- 403. https://doi.org/10.1080/2150704X.2014.912766