
Paper Publications
-
[1] Crowd counting network based on attention feature fusion and multi-column feature enhancement.Journal of Visual Communication and Image Representation.2024,105:104323
-
[2] Double multi-scale feature fusion network for crowd counting.Multimedia Tools and Applications.2024,83(34):81831-81855
-
[3] Double reuses based residual network.Neurocomputing.2024,593:127803
-
[4] Gated feature aggregate and alignment network for real-time semantic segmentation of street scenes.Multimedia Systems.2024,30(4):213
-
[5] Deep network with double reuses and convolutional shortcuts.IET Computer Vision.2024,18(4):512-525
-
[6] Attention based lightweight asymmetric network for real-time semantic segmentation.Engineering Applications of Artificial Intelligence.2024,130:107736
-
[7] Multi-scale cross-layer fusion and center position network for pedestrian detection.Journal of King Saud University - Computer and Information Sciences.2024,36(1):101886
-
[8] Attribute Feature Fusion Network for Pedestrian Detection and Re-Identification.International Conference on Robotics and Computer Vision (ICRCV).2023:36-40
-
[9] Semi-supervised uncorrelated dictionary learning for colour face recognition.IET Computer Vision.2020,14(3):92-100
-
[10] Within-component and Between-component Multi-kernel Discriminating Correlation Analysis for Colour Face Recognition.IET Computer Vision.2017,11(8):663-674
-
[11] Dual Multi-kernel Discriminant Analysis for Color Face Recognition.Optik.2017,139:185-201
-
[12] Kernel Local Sparse Representation Based Classifier.Neural Processing Letters.2016,43(1):85-95
-
[13] Parallel Nonlinear Discriminant Feature Extraction for Face and Handwritten Digit Recognition.Lecture Notes in Computer Science (Chinese Conference on Biometric Recognition, CCBR).2015,9428:536-543
-
[14] Colour-feature dual discriminating correlation analysis for face recognition.IET Computer Vision.2015,9(4):467-475
-
[15] Within-component and Between-component Discriminant Analysis for Color Face Recognition.Optik.2014,125(21):6366-6374
|

 PostalAddress:34862933aa17463cc21b1658e41dc0778a97518095ce29993d64638b0ae0c23cdf056efa5c60952cbba6e3d8b60d6eacdbc99645a2b7a78f4cbc2aeaba71e9b3e7a9b554749297723635573cc3313dafa3485788045ebe07bece33e1c55999335d36f423ede0470228c12455aad7e410c194b7d12cf072d977fc199e1bb124f6
 Telephone:b3c16ac3531d79eb2e8a7af6f009b7c9df1361a9e2325915ecaf1dec770ccbbd63197787ba0550cd73e4c5111432a45c9d47da39ba5bbe1b21d91b2e713781bc87fe67b893217867afffd81cae6c58c5d767f50772235335f80288d3cc972e98cceac0c67b89e6a6cd905aab59c1e63b85e54bd12f2899332a38b771a74c8958
 Email:0db702c4efcad081670e869f454b8272093e3d80d5e6c84870db012a29bcc46e58b4a5038627fee3f9b8c8c508e0c6ca6f4d717135f7656456092252eccc82e9192455bb0509f3bae702c176002bbce9c934df137beeb3120fb3080c971201c2da10283ab9d97c87bb2ca178ab4d85c70ee98993efb736c003c9efdcb9c831a4
|