Variational Quantum Singular Value Decomposition
发布时间:2023-09-08点击次数:
- 发表刊物:Quantum
- 关键字:Variational quantum algorithm, singular value decomposition
- 摘要:Singular value decomposition is central to many problems in engineering and scientific fields. Several quantum algorithms have been proposed to determine the singular values and their associated singular vectors of a given matrix. Although these algorithms are promising, the required quantum subroutines and resources are too costly on near-term quantum devices. In this work, we propose a variational quantum algorithm for singular value decomposition (VQSVD). By exploiting the variational principles for singular values and the Ky Fan Theorem, we design a novel loss function such that two quantum neural networks (or parameterized quantum circuits) could be trained to learn the singular vectors and output the corresponding singular values. Furthermore, we conduct numerical simulations of VQSVD for random matrices as well as its applications in image compression of handwritten digits. Finally, we discuss the applications of our algorithm in recommendation systems and polar decomposition.
Our work explores new avenues for quantum information processing beyond the conventional protocols that only works for Hermitian data, and reveals the capability of matrix decomposition on near-term quantum devices. - 论文类型:期刊论文
- 是否译文:否
- 收录刊物:SCI
- 发布刊物链接:https://arxiv.org/pdf/2006.02336
+143
王友乐
个人信息
- 教师姓名: 王友乐
- 性别: 男
- 所在单位: 软件学院
- 学历: 博士研究生毕业
- 学位:工学博士学位
- 在职信息: 在岗
- 职称: 讲师(高校)
- 毕业院校:悉尼科技大学
曾获荣誉
- 江苏省应用技术学会青年科技奖
- 悉尼量子学院博士奖学金
- 2023 年中国物理学会 - MindSpore Quantum 学术奖励基金
其他联系方式
- 通讯/办公地址: 南信大临江楼A1108
- 移动电话: 18860848606
- 邮箱: youlew@foxmail.com