53 |
个人信息Personal Information
教授 博士生导师 硕士生导师
教师拼音名称:XU LEILEI
所在单位:环境科学与工程学院
职称:教授
博士生导师
硕士生导师
个人简介Personal Profile
个人简介:
姓名: 徐磊磊
职称: 教授
导师:博士生导师
学历: 博士
毕业学校:中国科学院大学
(中国科学院兰州化学物理研究所,
羰基合成与选择氧化国家重点实验室(低碳催化与二氧化碳利用全国重点实验室))
研究方向:温室气体CO2资源化利用(碳中和科学与技术);大气污染治理;
VOCs污染治理;环境净化材料;新型稀土催化材料;光-热催化净化技术;
环境催化;稀土催化;能源催化等
联系邮箱:leileixu88@gmail.com
教育与研究背景:
(1)2004.09-2008.07 曲阜师范大学,化学与化工学院,材料化学,理学学士
(2)2008.09-2013.06 中国科学院大学,兰州化学物理研究所,物理化学,理学博士
(3)2013.06-2013.08 新加坡国立大学苏州研究院(NUSIR),研究员
(4)2013.08-2015.08 新加坡国立大学(NUS),化学系,博士后
(5)2015.09-2017.09 韩国科学技术院(KAIST),纳米材料与化学反应中心,高级研究员
(6)2019.03-2021.07 阿卜杜拉国王科技大学(KAUST),催化中心,博士后
学术兼职:
(1)Frontier in Chemistry (中科院SCI二区,影响因子5.545),副主编
(2)Sustainable Chemistry(SCI杂志),编委委员
(3)Applied Catalysis B: Environmental、Fuel、Applied Surface Science、ACS Catalysis、Journal of CO2 Utilization等十几种学术期刊优秀审稿人
荣誉获奖:
1、第十八届全国稀土催化会议优秀论文奖,2011 年,中国稀土学会
2、第二十六届甘肃省青少年科技创新大赛一等奖(辅导),2011 年,甘肃省科协、甘肃省教育厅
3、中国科学院朱李月华优秀博士生奖学金,2013 年,中国科学院前沿科学与教育局
4、南京市第十二届自然科学优秀学术论文奖,2018 年,南京市自然科学优秀学术论文评审委员会
5、南京信息工程大学首届青年科技之星——“十大科技之星”提名奖,2023年,南京信息工程大学
6、2020-2024连续5年入选全球前2%顶尖科学家“年度科学影响力”榜单(World's Top 2% Scientists 2023,斯坦福大学发布)
近期科研项目:
(1)基于有序介孔Ni/Ce基稀土固溶体构筑低温高效CO2甲烷化催化剂及机理研究,国家自然科学基金(面上项目),主持
(2)有序介孔限域的镍/钴基金属氧化物材料的构建及其催化甲烷二氧化碳重整反应性能研究,国家自然科学基金(青年基金),主持
(3)零碳生物质燃料锅炉非常规大气污染物排放及潜在环境影响研究,横向课题,主持
(4)应用于泥水共治的光/热/生三元耦合介导产品的开发,横向课题,主持
迷你公告板:
环境与能源催化课题组长期从事温室气体二氧化碳资源化利用(碳中和科学与技术)、大气污染控制技术、环境净化材料等领域的研究工作,课题负责人在中科院兰州化物所羰基合成与选择氧化国家重点实验室攻读博士学位,之后在新加坡国立大学化学系(NUS)、韩国基础科学研究院纳米材料与化学反应中心(韩国科学技术院化学系,KAIST)、沙特阿拉伯阿卜杜拉国王科技大学催化中心(KAUST)等单位从事科学研究。已在Applied Catalysis B: Environmental、ACS Catalysis、Applied Surface Science、Fuel、ChemCatChem、Catalysis Science & Technology、Journal of CO2 Utilization、International Journal of Hydrogen Energy等环境、催化、能源化工等领域权威专业期刊上共发表SCI论文110余篇,已被引用4400余次,单篇引用超过100次的论文12篇, h因子为49,i10指数87。
环境与能源催化题组立足“减污降碳”和“碳达峰—碳中和”国家战略,长期从事温室气体CO2资源化利用(碳中和科学与技术)、大气污染控制技术、环境净化材料等领域的研究工作,课题组配有固定床反应器(2套)、美国Perkins Elmer GC 680在线全自动进样色谱、天美GC7900在线全自动进样色谱、美国TILON LCD-200在线质谱、催化反应动力学评价系统(1套)、水热合成材料设备、催化剂制备、均相反应器、真空干燥烘箱等先进科研设备,并与中科院兰州化物所、新加坡国立大学、韩国科学技术院、阿卜杜拉国王科技大学、济南大学、山东理工大学、江苏大学、南京林业大学、中科院青岛能源所等国内外著名科研单位具有良好的合作关系。
课题组自2017年9月成立至今已经发表论文80余篇,其中南京信息工程大学通讯单位论文40篇(其中中科院一区论文18篇,二区论文17篇,三区论文5篇),已培养研究生13名(含博士生1名),实验室现有在读研究生9名,留学生2名,本科生10余名。
近年来,课题组的研究生和本科生培养成绩斐然,所培养的研究生累计荣获国家级荣誉7项(2019年——2022年连续四年6人次获奖),校长奖学金1项,校级一等学业奖学金若干项。
课题组同学荣获研究生国家奖学金和校长奖学金情况:
(1)2022级何婧同学荣获2024年硕士研究生国家奖学金(全院共5人获奖)
(2)2020级崔岩同学(博士生,与陈敏东教授联合培养)荣获2022年博士研究生国家奖学金(环科院仅2人)
(3)2019级温雪莹同学荣获2021年研究生校长奖学金(全院仅1人,全校共8人)
(4)2019级温雪莹同学荣获2021年国家奖学金(全院共6人)
(5)2020级薛莹莹同学荣获2021年国家奖学金(全院共6人)
(6)2020级崔岩同学荣获博士入学一等奖学金(全院仅1人)
(7)2018级吕楚菲同学荣获2020年硕士研究生国家奖学金(全院共5人获奖)
(8)2018级吴限贇同学荣获2020年硕士研究生国家奖学金(全院共5人获奖)
(9)2017级崔岩同学荣获2019年硕士研究生国家奖学金(全院共5人获奖)
课题组同学荣获优秀毕业论文情况:
(1)2020级博士研究生崔岩同学荣获2023年南京信息工程大学优秀博士论文(《介孔二氧化铈纳米球的制备及其在甲苯催化氧化中的应用研究》)
(2)2018级硕士研究生吕楚菲同学荣获2022年南京信息工程大学优秀硕士论文(《载体的孔道和形貌调控对Ni基催化剂催化CO2甲烷化性能影响研究》)
(3)2019级硕士研究生温雪莹同学荣获2023年南京信息工程大学优秀硕士论文(《基于in-situ DRIFTS等原位表征技术构建低温高效Ni基CO2甲烷化催化剂》)
(4)2019级本科生王舒涵同学荣获2023年南京信息工程大学优秀本科生毕业论文(一等)(《纳米二氧化铈形貌效应对镍基二氧化碳甲烷化催化剂催化性能的影响研究》)
课题组已毕业同学(本科生和研究生)升学和就业情况:
(1)2016级连鑫博同学保送兰州大学博士(黄建平院士课题组)
(2)2017级崔岩同学成功保送南京信息工程大学博士研究生
(3)2019级温雪莹同学成功保送华中科技大学博士研究生(龚江研究员课题组)
(4)2019级宋惠康同学成功保送东南大学博士(黄亚继教授课题组)
(5)2020级卞玉芳同学成功保送北京工业大学博士(国家杰青陈标华教授、王宁教授课题组)
(6)2020级博士研究生崔岩同学毕业后入职江苏环保集团(国企)
(7)2019级硕士研究生施溢宇同学考取江苏省名校优选生(选调生),就职于盐城市响水县四级主任科员
(8)2018级硕士研究生吴限贇同学任职于贵阳市城市发展投资集团(国企)
(9) 2020级硕士研究生杨筱同学任职于攀枝花市生态环境局(事业单位)
(10)2019级本科生王舒涵考取昆山杜克大学硕士研究生
(11)2019级本科生阿里菲拉考取上海第二工业大学硕士研究生
(12)2020级本科生马榕悦考取西安交通大学硕士研究生(何炽教授课题组)
(13)2020级硕士研究生薛莹莹任职芯爱科技(南京)有限公司,担任高级工程师。
(14)2021级硕士研究生殷思远任职于南京扬子石化检维修有限责任公司(国企)
(15)2021级硕士研究生杨慧任职于南京金羚生物基纤维有限责任公司(南京化纤子公司)
(16)2020级硕士研究生张译心任职于中化地质矿山总局浙江地质勘查院(事业单位)
(17)2020级本科生王锦康任职于山西省运城市绛县气象台(事业单位)
(18)2020级本科生丁佳慧任职于中国民航河北空管分局(事业单位)
(19)2020级本科生刘彤任职于河北省邯郸市邱县气象局(事业单位)
(20)2020级本科生姚甲轩考取兰州交通大学硕士研究生
热烈欢迎具有环境、化学等专业背景的优秀同学加入本课题组(每年招收2~4名研究生),一起共同学习进步!
近期发表论文:
1. Zhao, F.; Liang, G.; Yang, X.; Lei, Y.; Jin, F.; Xu, L.; Zhang, C.; Jiang, W.; Ben, H.; Li, X., Micro-Structure Engineering in Pd-InOx Catalysts and Mechanism Studies for CO2 Hydrogenation to Methanol. Molecules 2024, 29 (16), 3715.
2. Zhang, Y.; Zhao, F.; Yang, H.; Yin, S.; Wu, C.-E.; Zhou, T.; Xu, J.; Xu, L.; Chen, M., Constructing Efficient CuO-Based CO Oxidation Catalysts with Large Specific Surface Area Mesoporous CeO2 Nanosphere Support. Nanomaterials 2024, 14 (6), 485.
3. Yin, S.; Xu, C.; Yang, H.; Wu, C.-e.; Wu, M.; Xu, J.; Zhu, H.; Qiu, J.; Xu, L.; Chen, M., Facilely preparing highly dispersed Ni-based CO2 methanation catalysts via employing the amino-functionalized KCC-1 support. Fuel 2024, 365, 131162.
4. Xu, J.; Bian, Y.; Tian, W.; Pan, C.; Wu, C.-e.; Xu, L.; Wu, M.; Chen, M., The Structures and Compositions Design of the Hollow Micro–Nano-Structured Metal Oxides for Environmental Catalysis. Nanomaterials 2024, 14 (14).
5. Sun, S.; Li, G.; Zhu, S.; Meng, W.; Xu, L.; Jiang, J.; Wang, F.; Li, X., A judicious hetero-dopants injection and abstraction of Co3O4 catalyst for efficient methane oxidation. Journal of Materials Chemistry A 2024.
6. He, J.; Yang, X.; Zhu, Z.; Luo, X.; Wu, C.-e.; Cui, Y.; Ge, Q.; Qiu, J.; Xu, L.; Chen, M., Enhanced low-temperature CO oxidation activity through crystal facet engineering of Pd/CeO2 catalysts. Ceramics International 2024, 50 (19), 36363-36374.
7. Zhang, H.; Zhang, Y.; Song, H.; Cui, Y.; Xue, Y.; Wu, C.-e.; Pan, C.; Xu, J.; Qiu, J.; Xu, L., Transition Metal (Fe2O3, Co3O4 and NiO)-Promoted CuO-Based α-MnO2 Nanowire Catalysts for Low-Temperature CO Oxidation. Catalysts 2023, 13 (3), 588.
8. Yang, H.; Wen, X.; Yin, S.; Zhang, Y.; Wu, C.-e.; Xu, L.; Qiu, J.; Hu, X.; Xu, L.; Chen, M., The construction of the Ni/La2O2CO3 nanorods catalysts with enhanced low-temperature CO2 methanation activities. Journal of Industrial and Engineering Chemistry 2023, 128, 167-183.
9. Xu, L.; Yang, X.; Shi, Y.; Chen, M.; Xue, Y.; Wu, C.-e.; Qiu, J.; Cheng, G.; Wang, N.; Xu, J., CO oxidation over the Cu2O/CuO hollow sphere heterojunction catalysts with enhanced low-temperature activities. International Journal of Hydrogen Energy 2023, 48 (64), 24845-24859.
10. Xu, L.; Xu, C.; Chen, B.; Bian, Y.; Wen, X.; Cheng, G.; Wu, C.-e.; Qiu, J.; Chen, M., One-pot synthesis of hexagonal mesoporous silica confined Ni based catalysts with advanced CO2 methanation performance. Fuel 2023, 333, 126411.
11. Xu, L.; Wen, X.; Xu, C.; Bian, Y.; Chen, M.; Cheng, G.; Wu, C.-e.; Qiu, J.; Chen, B.; Hu, X., Rare earths modified highly dispersed fibrous Ni/KCC-1 nanosphere catalysts with superb low-temperature CO2 methanation performances. Applied Surface Science 2023, 608, 155258.
12. Shao, Y.; Li, C.; Fan, M.; Gao, G.; Jiang, Y.; Sun, K.; Zhang, L.; Zhang, S.; Xu, L.; Hu, X., Torrefaction and hydrothermal carbonization pretreatments of rice impact nature of biochar from subsequent pyrolysis. Industrial Crops and Products 2023, 205, 117515.
13. Meng, J.; Miao, Z.; Zhang, J.; Wang, Z.; Zhang, R.; Xu, L.; Diao, L.; Zhou, J.; Zhuo, S., One-step synthesis of N-doped carbon nanotubes-encapsulated Ni nanoparticles for efficient electrochemical CO2 reduction to CO. Journal of Alloys and Compounds 2023, 939, 168798.
14. Liu, Y.; Miao, Z.; Liang, M.; Zhang, J.; Zhao, J.; Xu, L.; Zhou, J.; Zhuo, S., Facile synthesis of N-doping carbon-encapsulated metal catalyst for CO2 electroreduction to CO. Applied Surface Science 2023, 614, 156281.
15. Cui, Y.; Xu, L.; Zhang, Y.; Wu, C.-e.; Zou, W.; Zhang, L.; Wang, N.; Dong, L.; Chen, M., Oxidation of Toluene over Mesoporous MnO2/CeO2 Nanosphere Catalysts: Effects of the MnO2 Precursor and the Type of Support. Inorganic Chemistry 2023, 62 (25), 9983-10002.
16. Cui, Y.; Chen, B.; Xu, L.; Chen, M.; Wu, C.-e.; Qiu, J.; Cheng, G.; Wang, N.; Xu, J.; Hu, X., CO2 methanation over the Ni-based catalysts supported on the hollow ZSM-5 zeolites: Effects of the hollow structure and alkaline treatment. Fuel 2023, 334, 126783.
17. Bian, Y.; Xu, C.; Wen, X.; Xu, L.; Cui, Y.; Wang, S.; Wu, C.-e.; Qiu, J.; Cheng, G.; Chen, M., CO2 methanation over the Ni-based catalysts supported on nano-CeO2 with varied morphologies. Fuel 2023, 331, 125755.
18. Zhao, F.; Shi, Y.; Xu, L.; Chen, M.; Xue, Y.; Wu, C.-E.; Qiu, J.; Cheng, G.; Xu, J.; Hu, X., Designing highly efficient Cu2O-CuO Heterojunction CO oxidation catalysts: the roles of the support type and Cu2O-CuO interface effect. Nanomaterials 2022, 12 (17), 3020.
19. Yang, B.; Ni, M.; Gu, Q.; Huang, Q.; Xu, L.; Chen, M.; Jin, Q.; Wang, Z., Catalytic oxidation of chlorobenzene over Ce-Mn-Ox/TiO2: performance study of the porous structure. Catalysts 2022, 12 (5), 535.
20. Wang, Y.; Li, C.; Zhang, S.; Xu, L.; Hu, X., Steam reforming of monohydric alcohols and polyalcohols: Influence of single or multiple hydroxyl group (s) on nature of the coke. Journal of Industrial and Engineering Chemistry 2022, 110, 286-300.
21. Shi, Y.; Xu, L.; Chen, M.; Yang, B.; Cheng, G.; Wu, C.-e.; Miao, Z.; Wang, N.; Hu, X., Fabricating Cu2O-CuO submicron-cubes for efficient catalytic CO oxidation: The significant effect of heterojunction interface. Journal of Industrial and Engineering Chemistry 2022, 105, 324-336.
22. Mu, J.; Liang, M.; Huang, H.; Meng, J.; Xu, L.; Song, Z.; Wu, M.; Miao, Z.; Zhuo, S.; Zhou, J., Experimental and theoretical study of ZrMo-KIT-6 solid acid catalyst with abundant Brønsted acid sites. RSC advances 2022, 12 (15), 9310-9322.
23. Li, X.; Zhang, L.; Zhang, S.; Xu, L.; Hu, X., Steam reforming of sugar and its derivatives: Functionality dictates thermal properties and morphologies of coke. Fuel 2022, 307, 121798.
24. Li, X.; Liang, J.; Zhang, L.; Zhang, S.; Xu, L.; Wang, Y.; Hu, X., Coke formation in the co-production of hydrogen and phenols from pyrolysis-reforming of lignin. International Journal of Hydrogen Energy 2022, 47 (77), 32835-32848.
25. Kontchouo, F. M. B.; Sun, K.; Li, C.; Fu, Z.; Zhang, S.; Xu, L.; Hu, X., Steam reforming of acetone and isopropanol: Investigation of correlation of ketone and alcohol functional groups with properties of coke. Journal of the Energy Institute 2022, 101, 32-44.
26. Kontchouo, F. M. B.; Gao, Z.; Fan, M.; Zhang, L.; Zhang, S.; Hu, G.; Xu, L.; Hu, X., Methanation of CO2 over Ni/clay: effects of calcination temperature on catalyst properties and reaction intermediates formed. International Journal of Energy Research 2022, 46 (14), 19493-19507.
27. Cui, Y.; Song, H.; Shi, Y.; Ge, P.; Chen, M.; Xu, L., Enhancing the Low-Temperature CO Oxidation over CuO-Based α-MnO2 Nanowire Catalysts. Nanomaterials 2022, 12 (12), 2083.
28. Cui, Y.; Qiu, J.; Chen, B.; Xu, L.; Chen, M.; Wu, C.-e.; Cheng, G.; Yang, B.; Wang, N.; Hu, X., CO2 methanation over Ni/ZSM-5 catalysts: The effects of support morphology and La2O3 modification. Fuel 2022, 324, 124679.
29. Cui, Y.; Ge, P.; Chen, M.; Xu, L., Research progress in semiconductor materials with application in the photocatalytic reduction of CO2. Catalysts 2022, 12 (4), 372.
30. Yang, Z.; Cui, Y.; Ge, P.; Chen, M.; Xu, L., CO2 methanation over rare earth doped Ni-based mesoporous Ce0. 8Zr0. 2O2 with enhanced low-temperature activity. Catalysts 2021, 11 (4), 463.
31. Xue, Y.; Xu, L.; Chen, M.; Wu, C.-e.; Cheng, G.; Wang, N.; Hu, X., Constructing Ni-based confinement catalysts with advanced performances toward the CO 2 reforming of CH 4: state-of-the-art review and perspectives. Catalysis Science & Technology 2021, 11 (19), 6344-6368.
32. Xu, Q.; Gao, G.; Tian, H.; Gao, Z.; Zhang, S.; Xu, L.; Hu, X., Carbon materials derived from polymerization of bio-oil as a catalyst for the reduction of nitrobenzene. Sustainable Energy & Fuels 2021, 5 (11), 2952-2959.
33. Xu, L.; Wen, X.; Chen, M.; Lv, C.; Cui, Y.; Wu, X.; Wu, C.-E.; Miao, Z.; Hu, X., Highly dispersed Ni-La catalysts over mesoporous nanosponge MFI zeolite for low-temperature CO2 methanation: Synergistic effect between mesoporous and microporous channels. Journal of Industrial and Engineering Chemistry 2021, 100, 159-173.
34. Xu, L.; Cui, Y.; Chen, M.; Wen, X.; Lv, C.; Wu, X.; Wu, C.-e.; Miao, Z.; Hu, X., Screening Transition Metals (Mn, Fe, Co, and Cu) Promoted Ni-Based CO₂ Methanation Bimetal Catalysts with Advanced Low-Temperature Activities. 2021.
35. Xu, L.; Cui, Y.; Chen, M.; Wen, X.; Lv, C.; Wu, X.; Wu, C.-e.; Miao, Z.; Hu, X., Screening transition metals (Mn, Fe, Co, and Cu) promoted Ni-based CO2 methanation bimetal catalysts with advanced low-temperature activities. Industrial & Engineering Chemistry Research 2021, 60 (22), 8056-8072.
36. Wen, X.; Xu, L.; Chen, M.; Shi, Y.; Lv, C.; Cui, Y.; Wu, X.; Cheng, G.; Wu, C.-e.; Miao, Z., Exploring the influence of nickel precursors on constructing efficient Ni-based CO2 methanation catalysts assisted with in-situ technologies. Applied Catalysis B: Environmental 2021, 297, 120486.
37. Wang, Y.; Sun, K.; Zhang, S.; Xu, L.; Hu, G.; Hu, X., Steam reforming of alcohols and carboxylic acids: Importance of carboxyl and alcoholic hydroxyl groups on coke properties. Journal of the Energy Institute 2021, 98, 85-97.
38. Wang, F.; Han, K.; Xu, L.; Yu, H.; Shi, W., Ni/SiO2 catalyst prepared by strong electrostatic adsorption for a low-temperature methane dry reforming reaction. Industrial & Engineering Chemistry Research 2021, 60 (8), 3324-3333.
39. Tian, H.; Shao, Y.; Sun, K.; Gao, G.; Zhang, L.; Zhang, S.; Xu, L.; Hu, G.; Hu, X., Hydrogenation of biomass derivatives over Ni/clay catalyst: significant impacts of the treatment of clay with NaOH on the reaction network. Journal of Chemical Technology & Biotechnology 2021, 96 (9), 2569-2578.
40. Tian, H.; Gao, G.; Xu, Q.; Gao, Z.; Zhang, S.; Hu, G.; Xu, L.; Hu, X., Facilitating selective conversion of furfural to cyclopentanone via reducing availability of metallic nickel sites. Molecular Catalysis 2021, 510, 111697.
41. Sun, Y.; Li, C.; Li, Q.; Zhang, S.; Xu, L.; Gholizadeh, M.; Hu, X., Pyrolysis of flaxseed residue: Exploration of characteristics of the biochar and bio-oil products. Journal of the Energy Institute 2021, 97, 1-12.
42. Sun, K.; Shao, Y.; Liu, P.; Zhang, L.; Gao, G.; Dong, D.; Zhang, S.; Hu, G.; Xu, L.; Hu, X., A solid iron salt catalyst for selective conversion of biomass-derived C5 sugars to furfural. Fuel 2021, 300, 120990.
43. Song, H.; Xu, L.; Chen, M.; Cui, Y.; Wu, C.-e.; Qiu, J.; Xu, L.; Cheng, G.; Hu, X., Recent progresses in the synthesis of MnO 2 nanowire and its application in environmental catalysis. RSC advances 2021, 11 (56), 35494-35513.
44. Shao, Y.; Wang, J.; Sun, K.; Gao, G.; Li, C.; Zhang, L.; Zhang, S.; Xu, L.; Hu, G.; Hu, X., Selective hydrogenation of furfural and its derivative over bimetallic NiFe-based catalysts: understanding the synergy between Ni sites and Ni–Fe alloy. Renewable Energy 2021, 170, 1114-1128.
45. Shao, Y.; Li, Q.; Dong, X.; Wang, J.; Sun, K.; Zhang, L.; Zhang, S.; Xu, L.; Yuan, X.; Hu, X., Cooperation between hydrogenation and acidic sites in Cu-based catalyst for selective conversion of furfural to γ-valerolactone. Fuel 2021, 293, 120457.
46. Shao, Y.; Guo, M.; Wang, J.; Sun, K.; Zhang, L.; Zhang, S.; Hu, G.; Xu, L.; Yuan, X.; Hu, X., Selective conversion of furfural into diols over Co-based catalysts: Importance of the coordination of hydrogenation sites and basic sites. Industrial & Engineering Chemistry Research 2021, 60 (28), 10393-10406.
47. Miao, Z.; Meng, J.; Liang, M.; Li, Z.; Zhao, Y.; Wang, F.; Xu, L.; Mu, J.; Zhuo, S.; Zhou, J., In-situ CVD synthesis of Ni@ N-CNTs/carbon paper electrode for electro-reduction of CO2. Carbon 2021, 172, 324-333.
48. Li, X.; Zhang, L.; Li, Q.; Zhang, Z.; Zhang, S.; Li, Y.; Niu, S.; Gholizadeh, M.; Xu, L.; Hu, X., Steam reforming of sugars: Roles of hydroxyl group and carbonyl group in coke formation. Fuel 2021, 292, 120282.
49. Li, X.; Wang, Y.; Fan, H.; Liu, Q.; Zhang, S.; Hu, G.; Xu, L.; Hu, X., Impacts of residence time on transformation of reaction intermediates and coking behaviors of acetic acid during steam reforming. Journal of the Energy Institute 2021, 95, 101-119.
50. Li, X.; Shao, Y.; Zhang, S.; Wang, Y.; Xiang, J.; Hu, S.; Xu, L.; Hu, X., Pore diameters of Ni/ZrO2 catalysts affect properties of the coke in steam reforming of acetic acid. International Journal of Hydrogen Energy 2021, 46 (46), 23642-23657.
51. Li, C.; Sun, Y.; Zhang, L.; Wang, C.; Zhang, S.; Li, Q.; Xu, L.; Hu, X., Cross-interaction of volatiles from co-pyrolysis of lignin with pig manure and their effects on properties of the resulting biochar. Biochar 2021, 3, 391-405.
52. Han, K.; Yu, W.; Xu, L.; Deng, Z.; Yu, H.; Wang, F., Reducing carbon deposition and enhancing reaction stability by ceria for methane dry reforming over Ni@ SiO2@ CeO2 catalyst. Fuel 2021, 291, 120182.
53. Gao, Z.; Gao, G.; Li, C.; Tian, H.; Xu, Q.; Zhang, S.; Xu, L.; Hu, X., Interaction of the reaction intermediates in co-reforming of acetic acid and ethanol impacts coke properties. Molecular Catalysis 2021, 504, 111461.
54. Zhang, Z.; Zhang, X.; Zhang, L.; Gao, J.; Shao, Y.; Dong, D.; Zhang, S.; Liu, Q.; Xu, L.; Hu, X., Impacts of alkali or alkaline earth metals addition on reaction intermediates formed in methanation of CO2 over cobalt catalysts. Journal of the Energy Institute 2020, 93 (4), 1581-1596.
55. Zhang, Z.; Sun, Y.; Wang, Y.; Sun, K.; Gao, Z.; Xu, Q.; Zhang, S.; Hu, G.; Xu, L.; Hu, X., Steam reforming of acetic acid and guaiacol over Ni/Attapulgite catalyst: Tailoring pore structure of the catalyst with KOH activation for enhancing the resistivity towards coking. Molecular Catalysis 2020, 493, 111051.
56. Yang, H.; Xu, L.; Chen, M.; Lv, C.; Cui, Y.; Wen, X.; Wu, C.-e.; Yang, B.; Miao, Z.; Hu, X., Facilely fabricating highly dispersed Ni-based catalysts supported on mesoporous MFI nanosponge for CO2 methanation. Microporous and Mesoporous Materials 2020, 302, 110250.
57. Yang, B.; Jin, Q.; Huang, Q.; Chen, M.; Xu, L.; Shen, Y.; Xu, H.; Zhu, S.; Li, X., Synergetic catalytic removal of chlorobenzene and NOx from waste incineration exhaust over MnNb0. 4Ce0. 2Ox catalysts: Performance and mechanism study. Journal of Rare Earths 2020, 38 (11), 1178-1189.
58. Xu, L.; Wen, X.; Chen, M.; Lv, C.; Cui, Y.; Wu, X.; Wu, C.-e.; Yang, B.; Miao, Z.; Hu, X., Mesoporous Ce-Zr solid solutions supported Ni-based catalysts for low-temperature CO2 methanation by tuning the reaction intermediates. Fuel 2020, 282, 118813.
59. Wu, X.; Xu, L.; Chen, M.; Lv, C.; Wen, X.; Cui, Y.; Wu, C.-e.; Yang, B.; Miao, Z.; Hu, X., Recent progresses in the design and fabrication of highly efficient Ni-based catalysts with advanced catalytic activity and enhanced anti-coke performance toward CO2 reforming of methane. Frontiers in Chemistry 2020, 8, 581923.
60. Wang, F.; Wang, Y.; Zhang, L.; Zhu, J.; Han, B.; Fan, W.; Xu, L.; Yu, H.; Cai, W.; Li, Z., Performance enhancement of methane dry reforming reaction for syngas production over Ir/Ce0. 9La0. 1O2-nanorods catalysts. Catalysis Today 2020, 355, 502-511.
61. Miao, Z.; Li, Z.; Liang, M.; Meng, J.; Zhao, Y.; Xu, L.; Mu, J.; Zhou, J.; Zhuo, S.; Si, W., Ordered mesoporous titanium phosphate material: A highly efficient, robust and reusable solid acid catalyst for acetalization of glycerol. Chemical Engineering Journal 2020, 381, 122594.
62. Lv, C.; Xu, L.; Chen, M.; Cui, Y.; Wen, X.; Wu, C.-e.; Yang, B.; Wang, F.; Miao, Z.; Hu, X., Constructing highly dispersed Ni based catalysts supported on fibrous silica nanosphere for low-temperature CO2 methanation. Fuel 2020, 278, 118333.
63. Lv, C.; Xu, L.; Chen, M.; Cui, Y.; Wen, X.; Li, Y.; Wu, C.-e.; Yang, B.; Miao, Z.; Hu, X., Recent progresses in constructing the highly efficient Ni based catalysts with advanced low-temperature activity toward CO2 methanation. Frontiers in Chemistry 2020, 8, 269.
64. Liang, C.; Zhang, L.; Zheng, Y.; Zhang, S.; Liu, Q.; Gao, G.; Dong, D.; Wang, Y.; Xu, L.; Hu, X., Methanation of CO2 over nickel catalysts: Impacts of acidic/basic sites on formation of the reaction intermediates. Fuel 2020, 262, 116521.
65. Li, J.; Mei, X.; Zhang, L.; Yu, Z.; Liu, Q.; Wei, T.; Wu, W.; Dong, D.; Xu, L.; Hu, X., A comparative study of catalytic behaviors of Mn, Fe, Co, Ni, Cu and Zn–Based catalysts in steam reforming of methanol, acetic acid and acetone. International Journal of Hydrogen Energy 2020, 45 (6), 3815-3832.
66. Li, C.; Zhang, C.; Gao, G.; Gholizadeh, M.; Zhang, S.; Xu, L.; Zhang, L.; Li, Q.; Hu, X., Interaction of the volatiles from co-pyrolysis of pig manure with cellulose/glucose and their effects on char properties. Journal of Environmental Chemical Engineering 2020, 8 (6), 104583.
67. Han, B.; Zhao, L.; Wang, F.; Xu, L.; Yu, H.; Cui, Y.; Zhang, J.; Shi, W., Effect of calcination temperature on the performance of the Ni@ SiO2 catalyst in methane dry reforming. Industrial & Engineering Chemistry Research 2020, 59 (30), 13370-13379.
68. Han, B.; Wang, F.; Zhang, L.; Wang, Y.; Fan, W.; Xu, L.; Yu, H.; Li, Z., Syngas production from methane steam reforming and dry reforming reactions over sintering-resistant Ni@ SiO 2 catalyst. Research on Chemical Intermediates 2020, 46, 1735-1748.
69. Zhang, Z.; Tian, Y.; Zhang, L.; Hu, S.; Xiang, J.; Wang, Y.; Xu, L.; Liu, Q.; Zhang, S.; Hu, X., Impacts of nickel loading on properties, catalytic behaviors of Ni/geAl2O3 catalysts and the reaction intermediates formed in methanation of CO2. international journal of hydrogen energy 2019, 44 (9291), e9306.
70. Zhang, Z.; Tian, Y.; Zhang, L.; Hu, S.; Xiang, J.; Wang, Y.; Xu, L.; Liu, Q.; Zhang, S.; Hu, X., Impacts of nickel loading on properties, catalytic behaviors of Ni/γ–Al2O3 catalysts and the reaction intermediates formed in methanation of CO2. International Journal of Hydrogen Energy 2019, 44 (18), 9291-9306.
71. Zhang, L.; Wang, F.; Zhu, J.; Han, B.; Fan, W.; Zhao, L.; Cai, W.; Li, Z.; Xu, L.; Yu, H., CO2 reforming with methane reaction over Ni@ SiO2 catalysts coupled by size effect and metal-support interaction. Fuel 2019, 256, 115954.
72. Yang, B.; Li, Z.; Huang, Q.; Chen, M.; Xu, L.; Shen, Y.; Zhu, S., Synergetic removal of elemental mercury and NO over TiCe0. 25Sn0. 25Ox catalysts from flue gas: Performance and mechanism study. Chemical Engineering Journal 2019, 360, 990-1002.
73. Xu, L.; Cui, Y.; Chen, M.; Lian, X.; Yang, B.; Wu, C.-e.; Wang, F., Effects of the fabrication strategy on the catalytic performances of Co–Ni bimetal ordered mesoporous catalysts toward CO 2 methanation. Sustainable Energy & Fuels 2019, 3 (11), 3038-3049.
74. Xu, L.; Ao, Y.; Guan, B.; Xiang, Y.; Guan, J., Coordination complex transformation-assisted fabrication for hollow chestnut-like hierarchical ZnS with enhanced photocatalytic hydrogen evolution. Nanomaterials 2019, 9 (2), 273.
75. Lian, X.; Xu, L.; Chen, M.; Wu, C.-e.; Li, W.; Huang, B.; Cui, Y., Carbon dioxide captured by metal organic frameworks and its subsequent resource utilization strategy: a review and prospect. Journal of nanoscience and nanotechnology 2019, 19 (6), 3059-3078.
76. Cui, Y.; Xu, L.; Chen, M.; Lv, C.; Lian, X.; Wu, C.-e.; Yang, B.; Miao, Z.; Wang, F.; Hu, X., CO oxidation over metal oxide (La2O3, Fe2O3, PrO2, Sm2O3, and MnO2) doped CuO-based catalysts supported on mesoporous Ce0. 8Zr0. 2O2 with intensified low-temperature activity. Catalysts 2019, 9 (9), 724.
77. Cui, Y.; Xu, L.; Chen, M.; Lian, X.; Wu, C.-e.; Yang, B.; Miao, Z.; Wang, F.; Hu, X., Facilely fabricating mesoporous nanocrystalline Ce–Zr solid solution supported CuO-based catalysts with advanced low-temperature activity toward CO oxidation. Catalysis Science & Technology 2019, 9 (20), 5605-5625.
78. Cui, Y.; Lian, X.; Xu, L.; Chen, M.; Yang, B.; Wu, C.-e.; Li, W.; Huang, B.; Hu, X., Designing and fabricating ordered mesoporous metal oxides for CO2 catalytic conversion: a review and prospect. Materials 2019, 12 (2), 276.
79. Xu, L.; Lian, X.; Chen, M.; Cui, Y.; Wang, F.; Li, W.; Huang, B., CO2 methanation over CoNi bimetal-doped ordered mesoporous Al2O3 catalysts with enhanced low-temperature activities. International Journal of Hydrogen Energy 2018, 43 (36), 17172-17184.
80. Wang, F.; Han, B.; Zhang, L.; Xu, L.; Yu, H.; Shi, W., CO2 reforming with methane over small-sized Ni@ SiO2 catalysts with unique features of sintering-free and low carbon. Applied Catalysis B: Environmental 2018, 235, 26-35.
81. Xu, L.; Yang, H.; Chen, M.; Wang, F.; Nie, D.; Qi, L.; Lian, X.; Chen, H.; Wu, M., CO2 methanation over Ca doped ordered mesoporous Ni-Al composite oxide catalysts: The promoting effect of basic modifier. Journal of CO2 Utilization 2017, 21, 200-210.
82. Xu, L.; Wang, F.; Chen, M.; Yang, H.; Nie, D.; Qi, L.; Lian, X., Alkaline-promoted Ni based ordered mesoporous catalysts with enhanced low-temperature catalytic activity toward CO 2 methanation. RSC advances 2017, 7 (30), 18199-18210.
83. Xu, L.; Wang, F.; Chen, M.; Nie, D.; Lian, X.; Lu, Z.; Chen, H.; Zhang, K.; Ge, P., CO2 methanation over rare earth doped Ni based mesoporous catalysts with intensified low-temperature activity. International Journal of Hydrogen Energy 2017, 42 (23), 15523-15539.
84. Xu, L.; Wang, F.; Chen, M.; Fan, X.; Yang, H.; Nie, D.; Qi, L., Alkaline-promoted Co-Ni bimetal ordered mesoporous catalysts with enhanced coke-resistant performance toward CO2 reforming of CH4. Journal of CO2 Utilization 2017, 18, 1-14.
85. Wang, F.; Zhang, L.; Xu, L.; Deng, Z.; Shi, W., Low temperature CO oxidation and CH4 combustion over Co3O4 nanosheets. Fuel 2017, 203, 419-429.
86. Wang, F.; Xu, L.; Yang, J.; Zhang, J.; Zhang, L.; Li, H.; Zhao, Y.; Li, H. X.; Wu, K.; Xu, G. Q., Enhanced catalytic performance of Ir catalysts supported on ceria-based solid solutions for methane dry reforming reaction. Catalysis Today 2017, 281, 295-303.
87. Wang, F.; Xu, L.; Shi, W.; Zhang, J.; Wu, K.; Zhao, Y.; Li, H.; Li, H. X.; Xu, G. Q.; Chen, W., Thermally stable Ir/Ce 0.9 La 0.1 O 2 catalyst for high temperature methane dry reforming reaction. Nano Research 2017, 10, 364-380.
88. Cho, J.; Xu, L.; Jo, C.; Ryoo, R., Highly monodisperse supported metal nanoparticles by basic ammonium functionalization of mesopore walls for industrially relevant catalysis. Chemical Communications 2017, 53 (27), 3810-3813.
89. Yuan, K.; Zhong, J.-Q.; Zhou, X.; Xu, L.; Bergman, S. L.; Wu, K.; Xu, G. Q.; Bernasek, S. L.; Li, H. X.; Chen, W., Dynamic oxygen on surface: catalytic intermediate and coking barrier in the modeled CO2 reforming of CH4 on Ni (111). ACS Catalysis 2016, 6 (7), 4330-4339.
90. Xu, L.; Zhang, X.; Chen, M.; Qi, L.; Nie, D.; Ma, Y., Facilely fabricating Mg, Ca modified Co based ordered mesoporous catalysts for CO2 reforming of CH4: The effects of basic modifiers. International Journal of Hydrogen Energy 2016, 41 (39), 17348-17360.
91. Xu, L.; Wang, F.; Chen, M.; Zhang, J.; Yuan, K.; Wang, L.; Wu, K.; Xu, G.; Chen, W., Carbon dioxide reforming of methane over cobalt‐nickel bimetal‐doped ordered mesoporous alumina catalysts with advanced catalytic performances. ChemCatChem 2016, 8 (15), 2536-2548.
92. Xu, L.; Wang, F.; Chen, M.; Zhang, J.; Yuan, K.; Wang, L.; Wu, K.; Xu, G.; Chen, W., CO 2 methanation over a Ni based ordered mesoporous catalyst for the production of synthetic natural gas. RSC advances 2016, 6 (34), 28489-28499.
93. Xu, L.; Gong, H.; Deng, L.; Long, F.; Gu, Y.; Guan, J., Complex-mediated synthesis of tantalum oxyfluoride hierarchical nanostructures for highly efficient photocatalytic hydrogen evolution. ACS applied materials & interfaces 2016, 8 (14), 9395-9404.
94. Wang, Y.; Pan, F.; Dong, W.; Xu, L.; Wu, K.; Xu, G.; Chen, W., Recyclable silver-decorated magnetic titania nanocomposite with enhanced visible-light photocatalytic activity. Applied Catalysis B: Environmental 2016, 189, 192-198.
95. Wang, F.; Xu, L.; Zhang, J.; Zhao, Y.; Li, H.; Li, H. X.; Wu, K.; Xu, G. Q.; Chen, W., Tuning the metal-support interaction in catalysts for highly efficient methane dry reforming reaction. Applied Catalysis B: Environmental 2016, 180, 511-520.
96. Wang, F.; Xu, L.; Shi, W., Syngas production from CO2 reforming with methane over core-shell Ni@ SiO2 catalysts. Journal of CO2 Utilization 2016, 16, 318-327.
97. Zhang, J. L.; Wang, Z.; Zhong, J. Q.; Yuan, K. D.; Shen, Q.; Xu, L. L.; Niu, T. C.; Gu, C. D.; Wright, C. A.; Tadich, A., Single-molecule imaging of activated nitrogen adsorption on individual manganese phthalocyanine. Nano Letters 2015, 15 (5), 3181-3188.
98. Zhang, J.; Wang, L.; Xu, L.; Ge, X.; Zhao, X.; Lai, M.; Liu, Z.; Chen, W., Porous cobalt–manganese oxide nanocubes derived from metal organic frameworks as a cathode catalyst for rechargeable Li–O 2 batteries. Nanoscale 2015, 7 (2), 720-726.
99. Zhang, J.; Luan, Y.; Lyu, Z.; Wang, L.; Xu, L.; Yuan, K.; Pan, F.; Lai, M.; Liu, Z.; Chen, W., Synthesis of hierarchical porous δ-MnO 2 nanoboxes as an efficient catalyst for rechargeable Li–O 2 batteries. Nanoscale 2015, 7 (36), 14881-14888.
100. Xu, L.; Zhang, J.; Wang, F.; Yuan, K.; Wang, L.; Wu, K.; Xu, G.; Chen, W., One-step synthesis of ordered mesoporous CoAl 2 O 4 spinel-based metal oxides for CO 2 reforming of CH 4. RSC Advances 2015, 5 (60), 48256-48268.
101. Wang, L. J.; Zhang, J.; Zhao, X.; Xu, L. L.; Lyu, Z. Y.; Lai, M.; Chen, W., Palladium nanoparticle functionalized graphene nanosheets for Li–O 2 batteries: enhanced performance by tailoring the morphology of the discharge product. RSC advances 2015, 5 (90), 73451-73456.
102. Dong, W.; Pan, F.; Xu, L.; Zheng, M.; Sow, C. H.; Wu, K.; Xu, G. Q.; Chen, W., Facile synthesis of CdS@ TiO2 core–shell nanorods with controllable shell thickness and enhanced photocatalytic activity under visible light irradiation. Applied Surface Science 2015, 349, 279-286.
103. Xu, L.; Miao, Z.; Song, H.; Chou, L., CO2 reforming of CH4 over rare earth elements functionalized mesoporous NieLn (Ln [Ce, La, Sm, Pr) eAleO composite oxides. international journal of hydrogen energy 2014, 39 (3253), e3268.
104. Xu, L.; Miao, Z.; Song, H.; Chou, L., CO2 reforming of CH4 over rare earth elements functionalized mesoporous Ni–Ln (Ln= Ce, La, Sm, Pr)–Al–O composite oxides. International journal of hydrogen energy 2014, 39 (7), 3253-3268.
105. Xu, L.; Miao, Z.; Song, H.; Chen, W.; Chou, L., Significant roles of mesostructure and basic modifier for ordered mesoporous Ni/CaO–Al 2 O 3 catalyst towards CO 2 reforming of CH 4. Catalysis Science & Technology 2014, 4 (6), 1759-1770.
106. Miao, Z.; Song, H.; Zhao, H.; Xu, L.; Chou, L., One-pot synthesis of mesoporous ZrPW solid acid catalyst for liquid phase benzylation of anisole. Catalysis Science & Technology 2014, 4 (3), 838-850.
107. Zhao, H.; Song, H.; Xu, L.; Chou, L., Isobutane dehydrogenation over the mesoporous Cr2O3/Al2O3 catalysts synthesized from a metal-organic framework MIL-101. Applied Catalysis A: General 2013, 456, 188-196.
108. Xu, L.; Wang, Z.; Song, H.; Chou, L., Catalytic dehydrogenation of isobutane over ordered mesoporous Cr2O3–Al2O3 composite oxides. Catalysis Communications 2013, 35, 76-81.
109. Xu, L.; Song, H.; Chou, L., Ordered mesoporous MgO–Al2O3 composite oxides supported Ni based catalysts for CO2 reforming of CH4: Effects of basic modifier and mesopore structure. International journal of hydrogen energy 2013, 38 (18), 7307-7325.
110. Miao, Z.; Xu, L.; Song, H.; Zhao, H.; Chou, L., One-pot synthesis of ordered mesoporous zirconium oxophosphate with high thermostability and acidic properties. Catalysis Science & Technology 2013, 3 (8), 1942-1954.
111. Xu, L.; Zhao, H.; Song, H.; Chou, L., Ordered mesoporous alumina supported nickel based catalysts for carbon dioxide reforming of methane. international journal of hydrogen energy 2012, 37 (9), 7497-7511.
112. Xu, L.; Song, H.; Chou, L., Facile synthesis of nano-crystalline alpha-alumina at low temperature via an absolute ethanol sol–gel strategy. Materials Chemistry and Physics 2012, 132 (2-3), 1071-1076.
113. Xu, L.; Song, H.; Chou, L., Mesoporous nanocrystalline ceria–zirconia solid solutions supported nickel based catalysts for CO2 reforming of CH4. International journal of hydrogen energy 2012, 37 (23), 18001-18020.
114. Xu, L.; Song, H.; Chou, L., One-pot synthesis of ordered mesoporous NiO–CaO–Al2O3 composite oxides for catalyzing CO2 reforming of CH4. Acs Catalysis 2012, 2 (7), 1331-1342.
115. Xu, L.; Li, C.; Shi, W.; Guan, J.; Sun, Z., Visible light-response NaTa1− xCuxO3 photocatalysts for hydrogen production from methanol aqueous solution. Journal of Molecular Catalysis A: Chemical 2012, 360, 42-47.
116. Xu, L.; Song, H.; Chou, L., Carbon dioxide reforming of methane over ordered mesoporous NiO–Al 2 O 3 composite oxides. Catalysis Science & Technology 2011, 1 (6), 1032-1042.
117. Xu, L.; Song, H.; Chou, L., Carbon dioxide reforming of methane over ordered mesoporous NiO–MgO–Al2O3 composite oxides. Applied Catalysis B: Environmental 2011, 108, 177-190.
授权专利:
1. CATALYST SYSTEMS AND METHODS OF SYNTHESIZING CATALYST SYSTEM, Patent No.: US 11,938,466 B2 (美国专利)
2. 一种全硅型短b轴ZSM-5沸石分子筛的制备方法,ZL 2021 1 0643101.0
3. 镍基二氧化铈空心球催化剂及其制备方法和应用,ZL 2024 10803088.4