Qr code
中文
Ian

Associate professor
Supervisor of Master's Candidates


Main Positions:电气工程系副系主任;学院外事秘书;江苏省气象能源利用与控制工程技术研究中心秘书
Gender:Male
Education Level:With Certificate of Graduation for Doctorate Study
School/Department:School of Automation
Discipline:Control Theory and Engineering
Business Address:学科楼3号楼N505
Contact Information:手机: 15205176357; 微信: 15205176357
E-Mail:
Click:Times

The Last Update Time: ..

Current Position: Home >> Scientific Research >> Paper Publications

A Decentralized Boltzmann-machine-based Fault Diagnosis Method for Sensors of Air Handling Units in HVACs

Hits: Praise

Impact Factor:7.144

DOI Number:10.1016/j.jobe.2022.104130

Affiliation of Author(s):南京信息工程大学

Journal:Journal of Building Engineering

Funded by:National Natural Science Foundation of China No. 52077105

Key Words:Fault diagnosis, voting, decentralized, sensors, Boltzmann machine

Abstract:As a key module in a Heating, Ventilation, and Air Conditioning (HVAC) system, an Air Handling Unit (AHU) is controlled based on information collected by sensors to satisfy human thermal comfort and air quality requirements. Fault diagnosis is critical since it allows maintenance crews to know which faults have occurred to improve system availability. However, fault diagnosis in AHUs is challenging because of the following reasons. First, widely used fault indicators are correlated with changing environments, e.g., weather dynamics or occupants, thus may not be enough to distinguish faults. Second, existing decentralized fault diagnosis methods developed for sensors require solving many optimization problems, leading to high computational requirements. To overcome these challenges, this paper develops a decentralized Boltzmann-machine-based method. To address the first issue, residuals between actual values of several sensor readings and their estimates are considered as fault indicators since they are not related to changing environments. To address the second issue, a novel decentralized voting mechanism is developed based on the convergence characteristic of the Boltzmann machine to locate sensor faults while avoiding solving many optimization problems. However, the established Boltzmann machine usually has an asymmetric weight matrix, and thus it does not converge to the state estimates of sensors. To guarantee convergence, a new symmetrization method is developed to symmetrize the Boltzmann machine by adding an extra unit into the Boltzmann machine to reset the weight matrix while retaining the original voting. Experimental results demonstrate that our method can effectively diagnose sensor faults with high diagnostic accuracy.

All the Authors:Jun Cai,Yun Tang

First Author:Ying Yan

Indexed by:Journal paper

Correspondence Author:Yaowen Yu

Discipline:Engineering

Document Type:J

Volume:50

ISSN No.:2352-7102

Translation or Not:no

Date of Publication:2022-01-26

Included Journals:SCI

Publication links:https://sciencedirect.53yu.com/science/article/pii/S2352710222001437

 

Attachments:

1-s2.0-S2352710222001437-main.pdf Download []Times