丁鑫Xin Ding

副教授

 硕士生导师
学位:哲学博士学位
性别:男
毕业院校:加拿大不列颠哥伦比亚大学
学历:博士研究生毕业
在职信息:在岗
所在单位:人工智能学院(未来技术学院、人工智能产业学院)
电子邮箱:

个人简介

丁鑫,博士,副教授,硕士生导师入选国家级青年人才计划。2014年毕业于安徽大学,获得统计学学士学位;2016年毕业于美国伊利诺伊大学香槟分校,获得统计学硕士学位;2021年毕业于加拿大不列颠哥伦比亚大学,获得统计学博士学位,师从加拿大工程院院士、IEEE Fellow 王真 (Z Jane Wang) 教授和ASA Fellow William J. Welch 教授。2023年加入南京信息工程大学人工智能学院,主要从事概率生成模型、知识蒸馏、AI for Science(医疗、气象等)等方面的研究工作;主持国家自然科学基金青年项目1项、江苏省基础研究专项资金(基础研究计划)面上项目1项、江苏省国家重大人才工程入选者配套资助项目1项、南京留学人员科技创新项目(C类)1项、南京信息工程大学人才启动经费资助项目1项;以第一作者身份先后在IEEE TPAMI、IEEE TSP、ESWA、Neurocomputing、ICLR、AAAI等高水平国际期刊或会议上发表论文10余篇;担任AAAI、IJCAI、ICIP、IEEE SPL、ESWA、Neurocomputing等国际知名会议和期刊的审稿人与程序委员会成员。


Email:dingxin@nuist.edu.cn

Github:https://github.com/UBCDingXin

Google Scholar:https://scholar.google.com/citations?user=tiS63lYAAAAJ&hl=en


2025年研究生招生名额已满!




一、研究领域

包括但不限于:

    - 概率生成模型(对抗生成网络、扩散模型等;参见邱锡鹏的《神经网络与深度学习》第13章)

    - 模型压缩(知识蒸馏、量化等)

    - AI赋能医疗、气象等问题

    - 传统机器学习(分类、回归、聚类等)



二、招生信息

    - 每年招收人工智能专业学术型硕士(学硕)及专业型硕士(专硕)若干名。

    - 常年招收大二及以上本科生参与科研项目,提供论文与专利指导。

    - 每年提供若干本科生毕业论文(设计)指导名额,并可指导学生参与“中国国际大学生创新大赛”、“挑战杯”等高水平竞赛。

    - 项目组配备英伟达多型号GPU 30余张(持续扩充中),硬件资源充足。

    - 须对课题组的研究领域具有浓厚兴趣,熟练掌握Python编程,具备流畅的英文阅读与书写能力。

    - 具有扎实数理统计基础、拥有Pytorch项目开发经验与Latex使用经验者优先!



三、专著/教材

    [1] 丁鑫,许祖衡,陈哲,丁正龙,綦小龙. 生成式视觉模型原理与实践 [M]. 电子工业出版社, 2025. (ISBN: 9787121507045) 【购买链接】【配套代码】 

    [2] 丁正龙,李春彪,孔峰,丁鑫,胡伟. 数字孪生技术实战化应用 [M]. 电子工业出版社, 2025.

图片2.png



四、学术论文* 共同一作,^ 通讯作者,$ 指导学生)

Preprint

[1] Xin Ding^, Yun Chen$, Yongwei Wang, Kao Zhang, Sen Zhang, Peibei Cao, Xiangxue Wang. Imbalance-Robust and Sampling-Efficient Continuous Conditional GANs via Adaptive Vicinity and Auxiliary Regularization[J]. arXiv preprint arXiv:2508.01725, 2025. [Under Review] [PDF] [Code]

[2]  Huangsen Cao, Yongwei Wang, Yinfeng Liu, Sixian Zheng, Kangtao Lv, Zhimeng Zhang, Bo Zhang, Xin Ding, Fei Wu. HyperDet: Generalizable Detection of Synthesized Images by Generating and Merging A Mixture of Hyper LoRAs[J]. arXiv preprint arXiv:2410.06044, 2024. [Under Review]

2025

[1] Xin Ding, Yongwei Wang^, Kao Zhang, Z. Jane Wang. CCDM: Continuous conditional diffusion models for image generation[J]. IEEE Transactions on Multimedia. 2025. [AcceptedTMM'25, SCI 1] [PDF] [Code]

[2] Kangtao Lv, Huangsen Cao, Kainan Tu, Yihuai Xu, Zhimeng Zhang, Xin Ding, Yongwei Wang. Hyper Adversarial Tuning for Boosting Adversarial Robustness of Pretrained Large Vision Models[J]. Pattern Recognition, 2025: 112158. [PR'25, SCI 1][PDF]

[3] Zhan Shi, Xin Ding*^, Peng Ding, et al. Regression-oriented knowledge distillation for lightweight ship orientation angle prediction with optical remote sensing images[J]. Signal, Image and Video Processing, 2025, 19: 1247. [SCI 4] [PDF][Code]

[4] Jie Wang,  Sen Zhang, Yuanjin Zheng, Yongxin Li, Chunbiao Li, Yichen Wang, Xin Ding. Tri-Memristor Hyperchaotic Ring Neural Network With Hidden Firings: Dynamic Analysis, Hardware Implementation and Application to Image Encryption[J/OL]. IEEE Internet of Things Journal, 2025: 1-1. DOI: 10.1109/JIOT.2025.3601901. [SCI 2] [PDF

2024

[1] Xin Ding, Yongwei Wang^, Zuheng Xu. Turning waste into wealth: Leveraging low-quality samples for enhancing continuous conditional generative adversarial networks[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(10): 11802-11810. [AAAI'24, CCF A, AR 23.75%] [PDF][Code]

2023

[1] Xin Ding, Yongwei Wang^, Zuheng Xu, William J. Welch, Z. Jane Wang. Continuous conditional generative adversarial networks: Novel empirical losses and label input mechanisms[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(7): 8143-8158.  [T-PAMI'23, SCI 1, IF 23.6] [PDF][Code]

[2] Xin Ding, Yongwei Wang^, Zuheng Xu, Z. Jane Wang, William J. Welch. Distilling and transferring knowledge via cGAN-generated samples for image classification and regression[J]. Expert Systems with Applications, 2023, 213: 119060. [ESWA'23, SCI 1, IF 8.5] [PDF][Code]

[3] Xin Ding, Yongwei Wang^, Z. Jane Wang, William J. Welch. Efficient subsampling of realistic images from GANs conditional on a class or a continuous variable[J]. Neurocomputing, 2023, 517: 188-200.  [Neurocomputing'23, SCI 2, IF 6] [PDF][Code]

2022 and before

[1] Xin Ding^, Yongwei Wang, Zuheng Xu, William J. Welch, Z. Jane Wang. Image generation using continuous conditional generative adversarial networks[M]//Generative Adversarial Learning: Architectures and Applications: Vol. 217. 2022: 87-113. [PDF]

[2] Xin Ding*^, Yongwei Wang*, Zuheng Xu, William J. Welch, Z. Jane Wang. CcGAN: Continuous conditional generative adversarial networks for image generation[C]//International Conference on Learning Representations. 2021. [ICLR'21, AR 28.7%] [PDF][Code]

[3] Yongwei Wang, Xin Ding, Yixin Yang, Li Ding, Rabab Ward, Z Jane Wang. Perception matters: Exploring imperceptible and transferable anti-forensics for GAN-generated fake face imagery detection[J]. Pattern Recognition Letters, 2021, 146: 15-22. [PRL'21, SCI 3, IF 5.1] [PDF]

[4] Xin Ding*^, Qiong Zhang*, William J. Welch. Classification beats regression: Counting of cells from greyscale microscopic images based on annotation-free training samples[C]//Artificial Intelligence: First CAAI International Conference, CICAI 2021, Hangzhou, China, June 5–6, 2021, Proceedings, Part I 1. 2021: 662-673. [CICAI'21, EI, AR 34.5%] [PDF][Code]

[5] Li Ding, Yongwei Wang^, Xin Ding, Kaiwen Yuan, Ping Wang, Hua Huang, Z. Jane Wang. Delving into deep image prior for adversarial defense: A novel reconstruction-based defense framework[C]//Proceedings of the 29th ACM International Conference on Multimedia. 2021: 4564-4572.  [ACM MM'21, CCF A, AR 27.9%] [PDF]

[6] Xin Ding^, Z. Jane Wang, William J. Welch. Subsampling generative adversarial networks: Density ratio estimation in feature space with Softplus loss[J]. IEEE Transactions on Signal Processing, 2020, 68: 1910-1922.   [TSP'20, SCI 1, IF 5.4] [PDF][Code]

[7] Xin Ding^, Ziyi Qiu, Xiaohui Chen. Sparse transition matrix estimation for high-dimensional and locally stationary vector autoregressive models[J]. Electronic Journal of Statistics, 2017, 11: 3871-3902.  [EJS'17, SCI 3, IF 1.281] [PDF]


五、发明专利

1. Xin Ding, Deepak Sridhar, Juwei Lu, et al. Methods, devices, and computer readable media for training a keypoint estimation network using cGAN-based data augmentation: US18315866[P]. US20230281981(A1). [PDF]

2. 王杰, 张森, 陈成杰, 王燚晨, 丁鑫. 生成多方向多双涡卷混沌吸引子的忆阻神经网络电路. 国家发明专利,授权专利号:ZL 202411844799.2, 2025.

3. 丁正龙, 吴睿颀, 张琳洁, 王昊, 王诗婵, 梁语婷, 杨程, 丁鑫. 一种融合深度学习与区块链存证的刺绣数字化的全流程保护方法. 国家发明专利,授权专利号:ZL 2025 1 0550194.0, 2025.


六、科研项目

1. 国家自然科学基金青年项目 (主持,在研,2024.1-2026.12)

2. 江苏省基础研究专项资金(基础研究计划)面上项目(主持,在研,2024.9-2027.8)

3. 江苏省国家重大人才工程入选者配套资助项目(主持,在研,2024-2026)

4. 南京留学人员科技创新项目(C类)(主持,在研,2024.9-2025.8)

5. 南京信息工程大学人才启动经费资助项目(主持,在研,2024-2027)


七、主讲课程

1.《生成式人工智能》,本科,人工智能(产业拔尖班),专业选修课,2024秋/2025秋

2.《生成式人工智能技术应用》,本科,人工智能大模型微专业,专业必修课,2025春

3.《人工智能概论》,本科,人工智能,专业必修课,2024春

4.《人工智能前沿讲座》本科,专业选修课,2024春




教育经历

[1] 2010.9-2014.7
安徽大学 | 统计学 | 本科 | 理学学士学位
[2] 2014.9-2016.12
美国伊利诺伊大学香槟分校 | 统计学 | 硕士 | 理学硕士
[3] 2017.9-2021.11
加拿大不列颠哥伦比亚大学 | 统计学 | 博士 | 哲学博士

工作经历

暂无内容

研究方向

暂无内容

团队成员

暂无内容