刘辉

17

  • 主要任职:江苏省特聘教授(智能医学图像计算江苏高校重点实验室)
  • 其他任职:西安建筑科技大学艺术学院讲席教授(客座);国家电网南自集团首席专家
  • 性别:男
  • 毕业院校:德国不来梅大学
  • 学历:博士研究生毕业
  • 学位:工学博士学位
  • 在职信息:在岗
  • 所在单位:人工智能学院(未来技术学院、人工智能产业学院)
  • 联系方式:hui.liu@nuist.edu.cn

访问量:

开通时间:..

最后更新时间:..

【MS2OD:基于最小生成树和中心选择的离群点检测算法】MS2OD: Outlier Detection Using Minimum Spanning Tree and Medoid Selection

点击次数:

影响因子:6.8

DOI码:10.1088/2632-2153/ad2492

所属单位:University of Bremen; Nanjing University of Information Science and Technology

发表刊物:Machine Learning: Science and Technology

刊物所在地:England

关键字:outlier detection; data mining; medical data; machine learning; clustering; minimum spanning tree; medoid selection

摘要:As an essential task in data mining, outlier detection identifies abnormal patterns in numerous applications, among which clustering-based outlier detection is one of the most popular methods for its effectiveness in detecting cluster-related outliers, especially in medical applications. This article presents an advanced method to extract cluster-based outliers by employing a scaled minimum spanning tree (MST) data structure and a new medoid selection method: 1. we compute a scaled MST and iteratively cut the current longest edge to obtain clusters; 2. we apply a new medoid selection method, considering the noise effect to improve the quality of cluster-based outlier identification. The experimental results on real-world data, including extensive medical corpora and other semantically meaningful datasets, demonstrate the wide applicability and outperforming metrics of the proposed method.

备注:ESI Hot Paper (top 0.1%) and Highly-Cited Paper (top 1%).

全部作者:Jia Li, Jiangwei Li, Chenxu Wang, Fons J. Verbeek*, Tanja Schultz, Hui Liu*

论文类型:期刊论文

学科门类:工学

文献类型:J

卷号:5

页面范围:015025

是否译文:

发表时间:2024-02-12

收录刊物:SCI

发布刊物链接:https://iopscience.iop.org/article/10.1088/2632-2153/ad2492