• 其他栏目

    刘辉

    • 教授 博士生导师
    • 主要任职:教授、博导(智能医学图像计算江苏高校重点实验室);江苏省特聘教授
    • 其他任职:西安建筑科技大学艺术学院讲席教授(客座);合肥大学—德国奥斯纳布吕克应用技术大学联合学院客座教授;国电南自集团首席专家;葡萄牙新里斯本大学博士生导师;德国不来梅大学硕士生导师
    • 性别:男
    • 毕业院校:德国不来梅大学
    • 学历:博士研究生毕业
    • 学位:工学博士学位
    • 在职信息:在岗
    • 所在单位:人工智能学院(未来技术学院、人工智能产业学院)
    • 联系方式:hui.liu@nuist.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    【MMOD:基于自适应迭代最小生成树的离群点检测算法】Outlier detection using iterative adaptive mini-minimum spanning tree generation with applications on medical data

    点击次数:

    影响因子:4.0

    DOI码:10.3389/fphys.2023.1233341

    所属单位:Xi'an Jiaotong University; Leiden University; University of Bremen

    发表刊物:Frontiers in Physiology

    刊物所在地:Switzerland

    关键字:minimum spanning tree; outlier detection; cluster-based outlier detection; data mining; medical data

    摘要:As an important technique for data pre-processing, outlier detection plays a crucial role in various real applications and has gained substantial attention, especially in medical fields. Despite the importance of outlier detection, many existing methods are vulnerable to the distribution of outliers and require prior knowledge, such as the outlier proportion. To address this problem to some extent, this article proposes an adaptive mini-minimum spanning tree-based outlier detection (MMOD) method, which utilizes a novel distance measure by scaling the Euclidean distance. For datasets containing different densities and taking on different shapes, our method can identify outliers without prior knowledge of outlier percentages. The results on both real-world medical data corpora and intuitive synthetic datasets demonstrate the effectiveness of the proposed method compared to state-of-the-art methods.

    备注:ESI Hot Paper (top 0.1%) and Highly-Cited Paper (top 1%).

    全部作者:Jia Li, Jiangwei Li, Chenxu Wang, Fons J. Verbeek*, Tanja Schultz, Hui Liu*

    论文类型:期刊论文

    学科门类:工学

    文献类型:J

    卷号:14

    页面范围:1233341

    ISSN号:1664-042X

    是否译文:

    发表时间:2023-10-13

    收录刊物:SCI

    发布刊物链接:https://www.frontiersin.org/articles/10.3389/fphys.2023.1233341